
127

Transitioning from Structural to Nominal Code
with Efficient Gradual Typing
Technical Report

FABIAN MUEHLBOECK, IST Austria, Austria

ROSS TATE, Cornell University, United States of America

Gradual typing is a principled means for mixing typed and untyped code. But typed and untyped code often

exhibit different programming patterns. There is already substantial research investigating gradually giving

types to code exhibiting typical untyped patterns, and some research investigating gradually removing types

from code exhibiting typical typed patterns. This paper investigates how to extend these established gradual-

typing concepts to give formal guarantees not only about how to change types as code evolves but also about

how to change such programming patterns as well.

In particular, we explore mixing untyped “structural” code with typed “nominal” code in an object-oriented

language. But whereas previous work only allowed “nominal” objects to be treated as “structural” objects, we

also allow “structural” objects to dynamically acquire certain nominal types, namely interfaces. We present a

calculus that supports such “cross-paradigm” code migration and interoperation in a manner satisfying both

the static and dynamic gradual guarantees, and demonstrate that the calculus can be implemented efficiently.

CCS Concepts: • General and reference → Performance; • Software and its engineering → Formal

language definitions; Object oriented languages; Multiparadigm languages; Interoperability.

Additional Key Words and Phrases: Gradual Typing, Gradual Guarantee, Nominal, Structural, Call Tags

ACM Reference Format:
Fabian Muehlboeck and Ross Tate. 2021. Transitioning from Structural to Nominal Code with Efficient

Gradual Typing: Technical Report. Proc. ACM Program. Lang. 5, OOPSLA, Article 127 (October 2021), 70 pages.
https://doi.org/10.1145/3485504

1 INTRODUCTION
Many typed object-oriented languages are implemented markedly differently than untyped object-

oriented languages. For example, many compilers for typed object-oriented languages determine

the memory layouts of class instances at compile time, and similarly translate field accesses to

offset memory loads during compilation; whereas objects in untyped object-oriented languages are

often represented as hashtables, with the compiler translating field accesses to key-value lookups

in object hashtables. While an object has a number of structural properties, like what fields and
methods it has, many typed object-oriented languages use nominal type systems, permitting the

compiler to use the name of a type to establish and rely upon memory-layout invariants while

also abstracting such low-level details from the programmer. Beyond types, these implementation

considerations can prompt typed languages to use entirely different or restricted expressions for
specifying and constructing objects. For example, whereas untyped languages often allow one

to allocate a “structural” object by manually specifying its structure through explicit fields and

Authors’ addresses: Fabian Muehlboeck, IST Austria, Klosterneuburg, Austria, fabian.muehlboeck@ist.ac.at; Ross Tate,

Computer Science, Cornell University, Ithaca, New York, United States of America, ross@cs.cornell.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART127

https://doi.org/10.1145/3485504

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

HTTPS://ORCID.ORG/0000-0003-1548-0177
HTTPS://ORCID.ORG/0000-0002-7608-4605
https://doi.org/10.1145/3485504
https://orcid.org/0000-0003-1548-0177
https://orcid.org/0000-0002-7608-4605
https://doi.org/10.1145/3485504

127:2 Fabian Muehlboeck and Ross Tate

methods, typed languages often require one to allocate only “nominal” objects of some nominal

class, deriving the object’s structure from the fields and methods of the class.

These considerations have prompted us to explore a calculus and compiler for an object-oriented

language with which we examine the following two research questions:

(1) How can one extend gradual-typing concepts to make strong guarantees about bridging

untyped and typed languages when there are more substantial differences between the two

than just the absence or presence of type annotations?

(2) What design considerations and implementation techniques can one employ to maintain

the performance of typed object-oriented languages using compile-time memory layout

of typed nominal objects and method tables while also providing principled and efficient

interoperation with untyped structural objects?

More concretely, we explore how to design gradually typed object-oriented languages whose

programs can transition between untyped structural and typed nominal “paradigms” while incurring

low overheads and still ensuring strong desirable properties, such as the gradual guarantees [Siek

et al. 2015a] and soundness, that major mixed-typed industry languages like TypeScript, Flow, Hack,

and C# [Bierman et al. 2010] do not offer. Wrigstad et al. [2010] did preliminary investigation in this

space with like types in Thorn, but like types are limited in that they only let code treat nominal

objects as their structural counterpart, providing no way for structural objects to be treated as their

nominal counterpart. While our system also limits how objects can cross the paradigm boundary,

we exploit the heavy use of interfaces in typed nominal code to provide a way for structural objects

to masquerade as nominal objects. In particular, unlike Nom [Muehlboeck and Tate 2017], we do

not require objects to be allocated with a nominal type in order to cross the boundary—untyped

code can still use flexible object manipulation to create objects that can still cross the boundary

into typed code. In doing so, we provide substantially more interoperation between structural and

nominal code.

In this paper, we make the following contributions. In Section 2, we illustrate what transitioning

between structural and nominal paradigms within a code base could look like and how it relates to

existing concepts in gradual typing. In Section 3, we provide a calculus—MonNom—wherein untyped

structural code can be interwoven with typed nominal code. In Section 4, we specify a generalized
precision relation that can bridge more substantial differences than type annotations, along with a

static gradual guarantee that formally describes the kinds of transitions our calculus supports. In

Section 5, we define a semantics for our calculus alongwith a dynamic gradual guarantee ensuring
that such supported transitions do not change the run-time behavior of programs (assuming

inserted type annotations correctly classify the existing behavior of the program). In Section 6, we

examine the semantics in more detail and discuss their connection to implementation techniques
we employed to preserve common optimizations of typed code (such as determining memory

layouts at compile time) while also providing low-overhead interoperation with untyped code.

In Section 7, we demonstrate that these techniques indeed perform well: performance typically

improves proportionate to implementation effort when using our recommended migration strategy,

and even if one strays from this strategy the worst-case overheads stay under 25%.

2 OVERVIEW
Gradual typing is roughly the ability to mix typed and untyped program components together

within the same program [Gronski et al. 2006; Matthews and Findler 2007; Siek and Taha 2006;

Tobin-Hochstadt and Felleisen 2006]. In this work, we broaden this to support mixing not just

differences in typing discipline but also differences in paradigms that, at least in object-oriented

languages, often coincide with differences in typing discipline. As an example, consider Figure 1,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:3

main.mn fooey.mn
function main() {

twice(fooey());

}

⇓
A

function fooey() : dyn {

dyn f = new {};

f.foo = _(i : dyn) : dyn { return i+1; };

return f;

}

⇓
B

function fooey() : dyn {

return new {

foo(i : dyn) : dyn { return i+1; };

};

}

⇓
C

function fooey() : dyn {

return new {

foo(i : int) : int { return i+1; };

};

}

⇓
D

class Fooey() implements Foo {

foo(i : int) : int { return i+1; };

}

function fooey() : dyn { return new Fooey(); }

E

class Fooey() implements Foo {

foo(i : int) : int { return i+1; };

}

function fooey() : Foo { return new Fooey(); }

twice.mn

⇓
A

function twice(f : dyn) : dyn {

return f.foo(f.foo(0));

}

⇓
B

function twice(f : dyn) : dyn {

Foo F = f;

return F.foo(F.foo(0));

}

C

function twice(f : Foo) : int {

return f.foo(f.foo(0));

}

foo.mn

⇓
A ∅
B

interface Foo {

foo(i : int) : int;

}

Fig. 1. An example program setup with different variants for the files twice.mn, fooey.mn, and foo.mn

which provides multiple variations of two different program components, functions twice and fooey,

connected together inmain.mn. One application of gradual typing is code migration, and so the

variations are connected by arrows indicating how we would expect a program component to be

migrated through the variations. The transition fooey-B =⇒ fooey-C is a traditional transition in

gradual typing, simply replacing occurrences of the “dynamic” type dyn with “static” types—in this

case int. But the subsequent transition fooey-C =⇒ fooey-D is beyond traditional gradual typing

as it replaces an allocation of a structural object with an allocation of a newly defined nominal

class—moving from a structural paradigm to a nominal paradigm. This work focuses on how to

support and benefit from such mixing of paradigms as well as typing disciplines.

2.1 Code Migration and Gradual Guarantees
Gradual typing is often motivated in terms of code migration [Campora et al. 2017; Greenman and

Felleisen 2018; Tobin-Hochstadt and Felleisen 2006; Tobin-Hochstadt et al. 2017]. That is, one might

want to add types to an untyped codebase in order to increase confidence in its correctness, improve

its maintainability and/or extensibility, and/or accelerate its run-time performance. Adding types

throughout the entire program all at once can be an overwhelming undertaking, and so gradual

typing is designed to enable one to do so bit by bit, i.e. gradually.

Given that the codebase presumably has an existing user base and possibly other codebases

that depend on it, one would like to be assured that the migration to (correct/intended) types

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:4 Fabian Muehlboeck and Ross Tate

does not break backwards compatibility, either with respect to compilability with other programs

(i.e. static backwards compatibility) or with respect to its run-time behavior (i.e. dynamic backwards
compatibility). To this end, the static and dynamic gradual guarantees were defined [Siek et al.

2015a], which ensure that adding “correct” type annotations to a programwill preserve, respectively,

its typeability and its run-time behavior.

These gradual guarantees are defined in terms of a precision relation (⊑), where the left-hand
program component is considered to be more (rather than less) “precise” than the right-hand

component. Traditionally the only difference between more precise and less precise programs is

that the more precise program has “static” types (such as int) at some syntactic positions where

the less precise program has “dynamic” types (such as dyn). So, as an example, fooey-C would

be considered more precise than fooey-B. The static and dynamic gradual guarantees then state

that all program components related by the given precision relation type-check and execute

identically when “all goes well”, and that “problems” occur for the less precise program only when

“problems” occur for the more precise program (reflecting the fact that untyped programs are more

dynamic/flexible than typed programs).

We emphasize that these gradual guarantees are parameterized by a precision relation. Al-

though this precision relation traditionally just relates syntactic constructs componentwise, plus

a 𝜏 ⊑ dyn rule for type refinement, one can relate more kinds of programs. For example, New et al.

[2019] explored incorporating 𝛽 and [equivalences into the precision relation in order deduce

semantic theorems in addition to syntactic theorems. In this paper, we explore incorporating

the correspondences between structural object-oriented constructs and nominal object-oriented

constructs into the precision relation. For example, the structural counterpart to allocating a new

instance of a nominal class is allocating a record with the same fields and methods that were defined

in the class. As such, we consider fooey-D to be more precise than fooey-C (provided interface Foo

has been defined in foo.mn). And, more generally, every transition in Figure 1 corresponds to

our precision relation (modulo syntactic conveniences such as semicolons). Since our calculus—

MonNom—satisfies the static and dynamic gradual guarantees (Theorems 4.1 and 5.3), this in turn

guarantees that code can be migrated according to the transitions in Figure 1.

2.2 Mixing Paradigms
Because the precision relation is defined componentwise on most program constructs, the gradual

guarantees require gradually typed languages to support mixing typed and untyped program

components together in the same program. For example, these guarantees ensure that if the

combination of twice-C and fooey-E works correctly (which it does), then so does the combination

of twice-A and fooey-E despite the fact that the two use completely different forms of method

invocation: the former looks up the method implementation according to a fixed offset within an

interface method table whereas the latter performs a dictionary lookup using the method’s name.

But more challengingly, the combination of twice-C and fooey-A must also work correctly despite

the fact that it means that a structural record dynamically extended with a field holding a functional

value must be treated as if it implemented a nominal interface requiring a method of the same

name whose implementation is expected to be found at a fixed offset within an interface method

table. The former was possible in both Thorn and Nom, but not the latter, and that is due to the

above implementation challenges that we have determined how to address efficiently in this work.

These mixed programs are often viewed as simply intermediate states on the way to the end

goal of fully typed programs. But in this work we view many of these mixed programs as the end

goal themselves. This is because we are bridging paradigms, and each paradigm is better suited to

different tasks, so a mixed program is able to match each program component to the paradigm that

best fits its purpose. Furthermore, the dyn type can be more than simply lack of type annotations: it

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:5

is also a means to explicitly circumvent the limitations of the static type system. That is, rather than

dyn being just a type that has yet to be determined, we also view dyn as potentially conveying the

programmer’s intent to reason about the dynamics of the program beyond what the type system is

capable of expressing. For example, a closure can be cast to an interface representing a function

from Z to Z and then back to dyn and, unlike most (sound) gradually typed systems, our calculus

permits the resulting cast value to still be supplied, say, Rs and to return Rs when invoked from

untyped code with the understanding that the programmer may be well aware that the dynamics

of the program guarantees that this particular function also operates on other numerical values

even if the static type system is unaware of or unable to express that fact.

2.3 Changing Hierarchies
Consider the combination twice-Cwith foo-B. Because this is well typed, the static gradual guarantee
requires that any less precise combinationmust also bewell typed. Because twice and foo are separate

components, a traditional componentwise precision relation would consider the twice-C with foo-A
combination to be less precise. But clearly this combination should be ill-typed as twice-C references

an undefined type name, an issue that does not arise in structural type systems and did not arise in

Nom [Muehlboeck and Tate 2017] wherein the nominal hierarchy was fixed. This introduces a new

theoretical challenge to formulating our guarantees.

We address this challenge by defining our precision relation on program components within the

context of their respective nominal hierarchies. For example, our variant of the standard rule 𝜏 ⊑ 𝜏 ′

requires 𝜏 ′ to at least be valid in the nominal hierarchy of the less precise (i.e. right-hand) program.

This necessary change turns out to offer some useful flexibility. In particular, the precision

relation on expressions must now be parameterized by the respective nominal hierarchies, and as

such we can use differences in these hierarchies to guide how we bridge differences in expressions

and thereby manage how we much we mix the structural and nominal paradigms. In particular, we

allow class-instance allocations in the more precise program to refine structural-object allocations

in the less precise program only when the class is declared in the more precise nominal hierarchy

(and so prescribes a structure) but not in the less precise nominal hierarchy. This allows the compiler

to assume the fields of class instances lie at fixed offsets within the instance, while also permitting

developers to change a structural record into a new class provided that they simultaneously change

all other structural records (if any) corresponding to the class at the same time. As such, we can

support the fooey-C =⇒ fooey-D transition in Figure 1.

2.4 Casts, Coercions, and Run-Time Overhead
In this work we focus on (sound) gradual typing—as opposed to (unsound) optional typing—meaning

that type annotations, on say variables, actually provide dynamic guarantees, say about what values

those variables can hold. Sound gradual typing is often associated with performance issues, often

causing multiple factors of overhead, but in this work we rely on sound gradual typing to provide

good performance, such as to guarantee that a class field can always be found at a fixed offset.

The performance problems with gradual typing are due to the casts that are inserted at the

boundary points between typed and untyped code in order to dynamically enforce the contracts

expected by typed code. These casts are particularly problematic in the case of types enforcing

higher-order contracts, such as functions and objects. In many gradually typed implementations,

such casts require one to create a proxy for the cast value that performs the relevant casts on all

inputs to and outputs from the value. The sieve (of Eratosthenes) benchmark was designed to

highlight this problem and was found to incur over 100x overhead in Typed Racket [Takikawa

et al. 2016]. And while works such as Grift [Kuhlenschmidt et al. 2019] have proposed using

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:6 Fabian Muehlboeck and Ross Tate

“space-efficent” coercions [Herman et al. 2010] to mitigate this issue, Feltey et al. [2018] found that—

while their analagous “collapsible contracts” did address some pathological benchmarks—many

benchmarks were unaffected by the technique. Indeed, Grift found no difference between the two

techniques for sieve with coarse-grained mixing, and while Grift’s overhead for sieve is much

improved compared to Typed Racket (down to 3–4x slowdown), that seems to be due to low-level

implementation improvements rather than high-level strategy improvements, and it still leaves

unacceptable overhead for the benchmark.

On the other hand, there are some benchmarks where Grift performs extremely well. These

benchmarks tend to be numerical, specifically on floating-point values. This seems to be because

Grift uses type information not just to eliminate dynamic checks but furthermore to change how

values are represented. In particular, untyped Grift represents 64-bit floating-point numbers as

boxed values allocated in the heap, whereas typed Grift represents them as unboxed values. Thus

untyped numerical programs are constantly boxing and unboxing the values they compute with

whereas typed numerical programs have few heap allocations. This connects to our observation

that untyped object-oriented languages tend to be “structural” whereas typed object-oriented

languages tend to be “nominal”—performance can improve significantly when type information

affects representation. But whereas Grift gets this benefit for first-order values like numbers, we

want this benefit even for higher-order values. Our calculus achieves this through two means.

For interfaces, we utilize the fact that interface-method dispatch is often already implemented

using a form of indirection required to support multiple interface inheritance. So we hijack this

existing indirection to make it appear as if structural objects implement arbitrary interfaces.

Classes, on the other hand, often implement field access and method dispatch through fixed

offsets. That is, they use type information to optimize object representation. We cannot mimic this

like we can interface methods, and adding proxies would require typed code to check whether an

object is a proxy before every field access or method dispatch. Given that one benefit of types in our

setting is specifically performance, we do not want to add such overhead to the high-performance

path. So, while we allow structural objects to be coerced to interfaces, we do not allow them to be

coerced to classes, consciously trading off some interoperation flexibility to maintain performance

(while still providing a migration path through the means discussed above).

The result of this consideration of tradeoffs is that we can still support higher-order benchmarks

such as sieve, since the function type corresponds to an interface, but with much improved

run-time performance. In particular, most of our configurations of mixing typing disciplines and

paradigms exhibit better run-time performance than fully untyped code—as one would like to

see from gradually typed languages—and even in our worst-case configurations the overheads

are only percentages rather than factors. This is achieved without any program analysis (beyond

simple type-checking), heuristics, speculation, or dynamic (re-)compilation, and as such there

can be high confidence our techniques would scale to large, complex programs without hard-to-

predict performance cliffs. Of course, incorporating advanced techniques such as the speculative

optimization used by Richards et al. [2017] or the interprocedural program analysis used by Moy

et al. [2021] could improve the performance of our language even further.

3 MONNOM
Our calculus, MonNom, is built around a nominally typed, object-oriented core, which on its own

already supports a version of gradual typing similar to Nom [Muehlboeck and Tate 2017]. However,

MonNom also supports structural records and lambdas. But the structural types one would normally

expect for these records and lambdas are not reflected in MonNom’s type system; instead, they

are simply typed using the special dyn type from the gradual portion of MonNom’s core. On its

own, the structural part of the calculus behaves like major untyped object-oriented languages such

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:7

Class Name 𝐶 Interface Name 𝐼 Field Name 𝑓 Variable Name 𝑥

Program P ::= ⟨H | S | I | 𝑒⟩ (Notation: P = ⟨HP | SP | IP | 𝑒P⟩)
Hierarchy H ::= ∅ | H ;𝑁 ≤ 𝐼 , . . . Nominal Type 𝑁 ::= 𝐶 | 𝐼
Signature S ::= ∅ | S;𝑁 {𝑚𝑠; . . .} | S;𝐶 (®𝜏){𝑓 : 𝜏 ; . . .}
Implementation I ::= ∅ | I;𝑥 : 𝐶 (Γ){𝑓 := 𝑒; . . . | 𝑚𝑏; . . .}
Type 𝜏 ::= 𝑁 | B | dyn Method Name 𝑚 ::= 𝑓 | _
Type List ®𝜏 ::= ∅ | ®𝜏, 𝜏 Method Signature 𝑠 ::= (®𝜏) : 𝜏

Type Context Γ ::= ∅ | Γ, 𝑥 : 𝜏 Method Body 𝑏 ::= (Γ) ↦→ 𝑒 : 𝜏

Expression 𝑒 ::= 𝑥 | let ⟨Γ⟩ := ⟨𝑒, . . .⟩ in 𝑒 | false | true | 𝑒 == 𝑒
| 𝑒.𝑓 | 𝑒.𝑓 := 𝑒 | 𝑒 (𝑒, . . .)
| new 𝐶 (𝑒, . . .) | new _⟨𝑏⟩ | new 𝑥 := {𝑓 := 𝑒; . . . | 𝑚𝑏; . . .}

Fig. 2. Grammar

as Python and JavaScript. For example, every record has a dictionary for fields that are added at

run time, and fields that contain lambdas can also be treated just like methods and called directly.

Unlike Nom, no type annotations are necessary even on lambdas.

More importantly, MonNom provides a rich model of interaction between its nominal and

structural parts: values originating in nominal code can interact with and flow into structural code,

and vice versa. Moreover, we extend the static and dynamic gradual guarantees [Siek et al. 2015a]

to cover the transition from structural to nominal code. The gradual guarantee is the key property

of well-behaved program migration—it allows us to refine the parts of our example program in

Figure 1 along the lineages depicted there and know that the behavior of those programswill stay the

same. While MonNom takes care to align concepts between the structural and nominal paradigms

and typing disciplines, it does effectively contain multiple languages plus their interactions, and

consequently its formalism is too large to fit into this paper. The full formalism can be found in

Appendix A. Here we will elaborate upon only the key concepts.

3.1 Grammar
Figure 2 shows the syntax of MonNom. The first part of the figure specifies the structure of a

MonNom program P. A program has four components. The last component is essentially the main

expression of the program. But that expression exists in the context of the first three components,

which altogether define a traditional nominal class and interface hierarchy. In a real language, and

in our actual implementation, these three components would be defined via one syntactic unit, but

for the purposes of characterizing and proving the formal guarantees of MonNomwe found it useful

to separate them. The first componentH defines the inheritance hierarchy between classes and

interfaces. (Note that the calculus distinguishes class names 𝐶 and interface names 𝐼 syntactically,

using 𝑁 when either is applicable. Thus the syntax of H indicates that only interfaces can be

inherited in the calculus, although this is only for simplicity as our implementation also supports

single inheritance of classes.) The second component S defines the signatures of class and interface

methods and of class constructors and fields. The third component I specifies how class fields

are initialized from their constructor parameters, and how class methods are implemented (where

the variable 𝑥 represents this or self in method bodies). So, in short, given a program P, the

hierarchy HP establishes the program’s space of types; the signature SP provides the information

necessary for type-checking; and the implementation IP defines the overall execution of the

program, with the expression 𝑒P specifying how to kick off the execution.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:8 Fabian Muehlboeck and Ross Tate

H ⊢ 𝜏 ≤ 𝜏

H ⊢ 𝜏 ≤ 𝜏

𝑁 ≤ 𝐼1, . . . ∈ H H ⊢ 𝐼𝑖 ≤ 𝜏

H ⊢ 𝑁 ≤ 𝜏

Fig. 3. Nominal (≤) Subtyping

⊢ 𝜏 ∼ 𝜏 ⊢ 𝜏 ⊑ 𝜏
⊢ 𝜏 ∼ 𝜏 ⊢ 𝜏 ∼ dyn ⊢ dyn ∼ 𝜏 ⊢ 𝜏 ⊑ 𝜏 ⊢ 𝜏 ⊑ dyn

Fig. 4. Consistency (∼) and Precision (⊑)

The second part of Figure 2 specifies types and type contexts, as well as method names and

signatures. The types are either nominal, primitive (which in the calculus is just the booleans B, but
in our implementation includes 64-bit signed integers and 64-bit IEEE-754 floating-point numbers),

and the dynamic type dyn. Note that MonNom has no structural types for records or lambdas—they

are simply assigned the dynamic type dyn. Method names are either field names or the special

method name _ that allows objects to be invokable directly, just like a lambda closure.

The last part specifies expressions. The first line contains a number of different standard expres-

sions whose meaning should be unsurprising. Note, though, that the equality operator in MonNom

checks for equality of references. This means that, in order to satisfy the gradual guarantee, we

must ensure that transitions preserve the behavior of object identities. Furthermore, although

not formally discussed in this paper, we ensure this equality has the property that returning

true guarantees identical behavior, i.e. if 𝑥 ==𝑥 ′ then 𝑒𝑡 else 𝑒𝑓 is semantically equivalent

to if 𝑥 ==𝑥 ′ then 𝑒𝑡 [𝑥 ′ ↦→ 𝑥] else 𝑒𝑓 , which we found to conflict with devices such as the

“chaperone” references used by Typed Racket [Tobin-Hochstadt and Felleisen 2006].

The second line contains field access and mutation, along with application (which invokes

_-methods). Note that (named) method invocation is expressed in the grammar as application of

arguments to the result of a field access. In typed code, the type of the receiver distinguishes the

two, but untyped code has no such disambiguator. Indeed, MonNom’s type system has a special

rule for this particular combination, and one challenge was figuring how to design a semantics

and implementation that could handle the combined case efficiently in typed settings while still

satisfying the gradual guarantee with respect to untyped settings.

The third line of expressions contains the constructors for class instances, lambdas, and records,

in that order. Lambdas only specify their signature and implementation and (not so importantly)

have no self-reference. Records feature a variable 𝑥 that, like classes, is used to represent this or
self in method bodies. Records also have fields and method implementations—we can implement

these more efficiently when specified as part of the initial record allocation rather than added after

the allocation, and our precision relation connects the two ways of constructing records.

3.2 Type System
MonNom’s type system is built around subtyping. Without taking gradual typing into account,

the nominal subtyping relation for MonNom is defined in Figure 3. Since we omit generics in the

calculus, this relation is extremely simple.

Besides being object-oriented, MonNom is also gradually typed. At the core of gradual typing

is typically what is called the consistency relation, shown in Figure 4. Intuitively, two types are

consistent with each other if there is a way to replace the occurrences of dyn on both sides such

that the resulting types are identical (this again becomes more interesting with generics, but even

then is straightforward). Consistency is then used to relax typing rules, expressing the fundamental

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:9

H ⊢ 𝜏 ◁ 𝜏 H ⊢ 𝜏 ◀ 𝜏H ⊢ 𝜏 ≤ 𝜏 ′ ⊢ 𝜏 ′ ∼ 𝜏 ′′

H ⊢ 𝜏 ◁ 𝜏 ′′
H ⊢ 𝜏 ≤ 𝜏 ′ ⊢ 𝜏 ′ ⊑ 𝜏 ′′

H ⊢ 𝜏 ◀ 𝜏 ′′

Fig. 5. Optimistic (◁) and Pessimistic (◀) Subtyping

H | S | Γ ⊢ 𝑒 ↓ 𝜏 H | S | Γ ⊢ 𝑒 ↑ 𝜏 ′ H ⊢ 𝜏 ′ ◁ 𝜏
H | S | Γ ⊢ 𝑒 ↓ 𝜏

H | S | Γ ⊢ 𝑒 ↑ 𝜏
H | S | Γ ⊢ 𝑒 ↑ 𝜏

S ⊢ 𝜏 .𝑓 : 𝜏𝑓

H | S | Γ ⊢ 𝑒.𝑓 ↑ 𝜏𝑓

H | S | Γ ⊢ 𝑒 ↑ 𝜏
S ⊢ 𝜏 ._(𝜏1, . . .) : 𝜏_

∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖
H | S | Γ ⊢ 𝑒 (𝑒1, . . .) ↑ 𝜏_

H | S | Γ ⊢ 𝑒 ↑ 𝜏
S ⊢ 𝜏 .𝑓 (𝜏1, . . .) : 𝜏𝑓

∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖
H | S | Γ ⊢ 𝑒.𝑓 (𝑒1, . . .) ↑ 𝜏𝑓

H | S | Γ ⊢ 𝑏
H | S | Γ ⊢ new _⟨𝑏⟩ ↑ dyn

∀𝑖, 𝑖 ′. 𝑓𝑖 = 𝑓𝑖′ ⇒ 𝑖 = 𝑖 ′ ∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↑ 𝜏𝑖 �𝑖, 𝑖 ′. 𝑓𝑖 =𝑚𝑖′

∀𝑖, 𝑖 ′. 𝑚𝑖 =𝑚𝑖′ ⇒ 𝑖 = 𝑖 ′ ∀𝑖 . H | S | Γ, 𝑥 : dyn ⊢ 𝑏𝑖
H | S | Γ ⊢ new 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ↑ dyn

Fig. 6. Expression Typing (selected rules ofH | S | Γ ⊢ 𝑒 ↑ 𝜏 from Figure A.8)

optimism underlying gradual typing that a program is worth executing if it is plausible that the

types of the eventual run-time values could match.

The gradual guarantee depends on an asymmetric variant of consistency, called precision, shown
in Figure 4. Intuitively, one type is more precise than another if the two can be made equal by

replacing occurrences of dyn in the less precise type. Despite what the standard notation ⊢ 𝜏 ⊑ 𝜏 ′

might suggest, the left-hand type 𝜏 is more (not less) precise than the right-hand type 𝜏 ′. As we
will see in Section 4, this concept can be extended to whole programs and provides a formal means

to talk about program migration from less to more precise programs.

In type-checking, subtyping commonly plays a role similar to consistency—both relax what

would otherwise be a type-unification requirement. A language featuring both subtyping and

consistency needs to combine them, and Siek and Taha [2007] showed early in the history of

gradual typing that the right way of doing that is what they called consistent subtyping, but which
we call optimistic1 subtyping, defined in Figure 5. The optimism in optimistic subtyping is useful

for static type-checking. At run time, however, we care about safety and thus not about whether

two types could plausibly match, but whether the values of one are guaranteed to belong to the

other. Pessimistic subtyping, also defined in Figure 5, corresponds to this latter relationship.

Figure 6 shows the most interesting expression-typing rules of MonNom. MonNom uses bidirec-

tional type-checking. For example, application and method invocation synthesize (↑) the type of the
receiver, use that synthesized type to lookup the corresponding signature, and then check (↓) that
the arguments have the expected parameter types. Note that the lookup judgements S ⊢ 𝜏 .𝑓 : 𝜏𝑓
and S ⊢ 𝜏 .𝑚𝑠 (defined in Figure A.7) account for dyn receivers—so that they return dyn and, in the

latter case, accept all dyn parameters—which means that some expressions can be type-checked in

multiple ways: as a dynamically typed field access followed by a dynamically typed application, or

as a dynamically typed method invocation. Such dyn receivers arise in MonNom from more than

1
We use the nomenclature of Nom [Muehlboeck and Tate 2017] with respect to optimistic and pessimistic subtyping.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:10 Fabian Muehlboeck and Ross Tate

⊢ P ⊢ H H ⊢ S : H H | S ⊢ I : S H | S | ∅ ⊢ 𝑒 ↓ B
⊢ ⟨H | S | I | 𝑒⟩

Fig. 7. Program Typing (selected judgements from Figure A.5)

just omitted type annotations because, as mentioned before, structural objects such as lambdas and

records are assigned type dyn rather than a structural type.

Figure 7 specifies when a MonNom program is considered valid. In particular, the inheritance

hierarchy must be valid (⊢ H). Then the signature must provide method signatures for every

class and interface as well as constructor and field signatures for every class in a manner that

respects inheritance of methods (H ⊢ S : H). The implementation must provide, for every class,

a constructor initializing every field as well as a body for each method in accordance with the

signature (H | S ⊢ I : S). And lastly, the main expression must have Boolean type. The definition

of these respective judgements is deferred to Appendix A.2.2 because there is nothing surprising for

readers familiar with Java-like languages (though some might find the details of method inheritance

with gradual types interesting).

4 TRANSITION
Now that we have an overview of the syntax and type system the MonNom programmer works

within, we can more formally discuss the primary goal of the paper: guaranteeing a transition path

from untyped structural code to typed nominal code. Our calculus and language are designed to

enable programmers to replace a record or lambda with a corresponding (new) class and be assured

that the change will preserve the behavior of the program. Similarly, programmers should be able

to define interfaces describing how objects are used and transparently replace dynamic types with

those new interfaces.

As we discussed earlier, key to reasoning about this transition is the precision relation. The

precision relation (⊑) indicates the left component is more precise than the right component. The

gradual guarantee essentially says that more precise components can always be relaxed to less

precise variants and the only effect on behavior would be reduction in errors. The static gradual

guarantee is specifically about compile-time behavior, whereas the dynamic gradual guarantee

is specifically about run-time behavior. These guarantees ensure that no surprises happen when

transitioning an imprecise program to a more precise variant; the only changes that can occur are

errors that can arise from incorrectly describing the invariants (e.g. types) of the program, say by

annotating a variable with a type that does not accurately describe the expressions/values that get

assigned to that variable.

In most existing work, the precision relation is defined on types and trivially lifted to expressions.

Since we also want to model transitioning from structural to nominal code, our notion of precision

is more general. Because we make structural code untyped, the static gradual guarantee is relatively

uninteresting for this work. As such, here we tend to focus on the dynamic gradual guarantee,

which is what requires us to develop principled run-time interactions between structural and

nominal code.

Recall the example in Figure 1. In that example, one transition replaces a record with an instance

of a new class. This change adds a class to the hierarchy and changes an expression in the code

in a way that is not semantically equivalent because class instances are more restricted in how

they can be used. Yet we can still provide a gradual guarantee between these programs, meaning

we can guarantee the less precise program using a record can be used wherever the more precise

program using a new class would work. In particular, we can guarantee that such a replacement

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:11

⊢ H ⊑ H

⊢ ∅ ⊑ ∅
⊢ H ⊑ H ′

⊢ H ;𝑁 ≤ 𝐼1, . . . ⊑ H ′

⊢ H ⊑ H ′ ∀𝑖 ′.∃𝑖 . 𝐼𝑖 = 𝐼 ′𝑖′
∀𝑖, 𝐼 ′. H ⊢ 𝐼𝑖 ≤ 𝐼 ′ ∧ H ′ ⊢ 𝐼 ′ =⇒ ∃𝑖 ′. H ′ ⊢ 𝐼 ′𝑖′ ≤ 𝐼 ′

⊢ H ;𝑁 ≤ 𝐼1, . . . ⊑ H ′
;𝑁 ≤ 𝐼 ′

1
, . . .

⊢ P ⊑ P ⊢ HP ⊑ HP′ ⊢ SP ⊑ SP′ P ⊑ HP′ ⊢ IP ⊑ IP′ P ⊑ HP′ ⊢ 𝑒P ⊑ 𝑒P′

⊢ P ⊑ P ′

Fig. 8. Program Precision (selected judgements from Figure A.9)

works provided all the interfaces the record gets treated as having are explicitly inherited by the

new class, and all values assigned to fields in the record match the types of the fields of the class.

There is a novel technical caveat regarding our repeated emphasis on the fact that the class is

new. Technically speaking, the dynamic gradual guarantee requires that reducing precision does

not change program behavior. So one would expect that replacing an allocation of a class 𝐶 with a

record allocation with the same methods and fields would not change behavior, but this is not quite

true. In particular, whereas casting an instance of class 𝐶 to the type 𝐶 would succeed, casting a

corresponding record would fail in MonNom because we only allow interfaces to be imposed upon

structural objects. Of course, if the type 𝐶 occurs nowhere in the less precise program, i.e. 𝐶 is new
in the more precise program, then this difference in behavior is unobservable. This means that it is

critical to incorporate the fact that, as code is migrated, so is the nominal hierarchy, and precision

needs to account for these changes in the nominal hierarchy even as it reasons about more local

changes throughout the program. A key contribution of this work is showing how we can adapt

the existing notion of precision to account for this new dimension of code migration.

4.1 Program Precision
As mentioned, reasoning about precision in MonNom first requires reasoning about the nominal

hierarchy, in particular the inheritance hierarchy. The rules for precision between inheritance

hierarchies are shown in Figure 8. These rules permit the more precise program to have more nom-

inal types than the less precise program, while also ensuring that—when comparing two nominal

types that are present in both programs—nominal subtyping coincides in both programs. Thus one

can transition a program by introducing a new nominal type so long as one also simultaneously

adds that nominal type to the relevant inheritance clauses. The simultaneity is important because,

in MonNom, class instances cannot be cast to interfaces they do not explicitly declare, which in

turn means MonNom can generate all interface-method handlers for the class at compile time

(as is standard for typed object-oriented languages) and can reject subtypings not explicit in the

hierarchy (which is important for efficient/decidable type-checking/casts).

The rules for precision between signatures and implementations are elided here because, besides

the ability of the more precise signature/implementation to provide details for interfaces and

classes that are not present in the less precise signature/implementation, precision is simply defined

componentwise in the obvious manner. More importantly, the reader should observe that the

precision relation for expressions (and consequently implementations) is parameterized by the

more precise program and just the inheritance hierarchy of the less precise program. The latter

parameter enables the precision relation to determine which classes in the more precise program

are not in scope for the less precise expression, and the former parameter then enables the precision

relation to determine which structural definitions in the less precise expression correspond to the

implementations of new classes in the more precise program, as described in more detail next.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:12 Fabian Muehlboeck and Ross Tate

Extensibility 𝜒 ::= fix | ext

P ⊑ H ⊢ 𝑒 ⊑ 𝑒

∀𝑖 . H ′ ⊢ 𝜏 ′𝑖 ∀𝑖 . ⊢ 𝜏𝑖 ⊑ 𝜏 ′𝑖 ∀𝑖 . P ⊑ H ′ ⊢ 𝑒𝑖 ⊑ 𝑒 ′𝑖 P ⊑ H ′ ⊢ 𝑒 [𝑥1 ↦→ 𝑥 ′
1
, . . .] ⊑ 𝑒 ′

P ⊑ H ′ ⊢ let ⟨𝑥1 : 𝜏1, . . .⟩ := ⟨𝑒1, . . .⟩ in 𝑒 ⊑ let ⟨𝑥 ′
1

: 𝜏 ′
1
, . . .⟩ := ⟨𝑒 ′

1
, . . .⟩ in 𝑒 ′

𝑥 is not free in 𝑏

P ⊑ H ′ ⊢ 𝑥 := {| _𝑏} ⊑ 𝑒 ′ : 𝜒 ′

P ⊑ H ′ ⊢ new _⟨𝑏⟩ ⊑ 𝑒 ′
P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ⊑ 𝑒 ′ : ext

P ⊑ H ′ ⊢ new 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ⊑ 𝑒 ′

¬ H ′ ⊢ 𝐶 ∀𝑖 . H ′ ⊢ 𝜏 ′𝑖 𝑥 : 𝐶 (𝑥1 : 𝜏1, . . .){𝑓1 := 𝑒𝑓 ;1; . . . | 𝑚1𝑏1; . . .} ∈ IP ∀𝑖 . ⊢ 𝜏𝑖 ⊑ 𝜏 ′𝑖
∀𝑖 . P ⊑ H ′ ⊢ 𝑒𝑖 ⊑ 𝑒 ′𝑖 P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒𝑓 ;1; . . . | 𝑚1𝑏1 [𝑥1 ↦→ 𝑥 ′

1
, . . .]; . . .} ⊑ 𝑒 ′ : 𝜒 ′

P ⊑ H ′ ⊢ new 𝐶 (𝑒1, . . .) ⊑ let ⟨𝑥 ′
1

: 𝜏 ′
1
, . . .⟩ := ⟨𝑒 ′

1
, . . .⟩ in 𝑒 ′

H ′ ⊢ 𝜏 ′ ⊢ 𝜏 ⊑ 𝜏 ′ HP ⊢ 𝜏 ≤ 𝜏𝑥 P ⊑ H ′ ⊢ 𝑒𝑥 ⊑ 𝑒 ′𝑥 P ⊑ H ′ ⊢ 𝑒 [𝑥 ↦→ 𝑥 ′] ⊑ 𝑒 ′

P ⊑ H ′ ⊢ let ⟨𝑥𝑥 : 𝜏⟩ := ⟨𝑒𝑥 ⟩ in let ⟨𝑥 : 𝜏𝑥 ⟩ := ⟨𝑥𝑥 ⟩ in 𝑒 ⊑ let ⟨𝑥 ′
: 𝜏 ′⟩ := ⟨𝑒 ′𝑥 ⟩ in 𝑒 ′

P ⊑ H ⊢ 𝑥 := {𝑓 := 𝑒; . . . | 𝑚𝑏; . . .} ⊑ 𝑒 : 𝜒

𝑥 is not free in 𝑏 P ⊑ H ′ ⊢ 𝑏 ⊑ 𝑏 ′

P ⊑ H ′ ⊢ 𝑥 := {| _𝑏} ⊑ new _⟨𝑏 ′⟩ : fix

∀𝑖 . P ⊑ H ′ ⊢ 𝑒𝑖 [𝑥 ↦→ 𝑥 ′] ⊑ 𝑒 ′𝑖 ∀𝑖 . P ⊑ H ′ ⊢ 𝑏𝑖 [𝑥 ↦→ 𝑥 ′] ⊑ 𝑏 ′𝑖

P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ⊑ new 𝑥 ′
:= {𝑓1 := 𝑒 ′

1
; . . . | 𝑚1𝑏

′
1
; . . .} : ext

P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ⊑ 𝑒 ′ : ext P ⊑ H ′ ⊢ 𝑒𝑓 ⊑ 𝑒 ′
𝑓

P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . ; 𝑓 := 𝑒𝑓 | 𝑚1𝑏1; . . .} ⊑ 𝑒 ′.𝑓 := 𝑒 ′
𝑓

: ext

𝑥 is not free in 𝑏 P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . ; 𝑓 := new _⟨𝑏⟩ | 𝑚1𝑏1; . . .} ⊑ 𝑒 ′ : 𝜒 ′

P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . . ; 𝑓 𝑏} ⊑ 𝑒 ′ : 𝜒 ′

Fig. 9. Expression Precision (selected rules from Figure A.10)

4.2 Expression Precision
Our example in Figure 1 showed that code migration can change expressions beyond just type

annotations. Some of these differences are within a paradigm and some are across paradigms.

Figure 9 shows the five most novel rules of our precision relation that formally reasons about such

migration patterns.

The first rule is mostly straightforward. The key detail to note is that the types that occur in the

less precise let expression are required to be valid in the provided less precise hierarchy. In prior

works, the set of valid types was the same across more precise and less precise programs, and as

such if a type was valid in the more precise program it was necessarily valid in the less precise

program, making this requirement hold automatically. But our guarantees explicitly reason about

changes in the nominal hierarchy, and as such this requirement needs to be made explicit.

The three new rules make use of the judgement P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ⊑ 𝑒 ′ : 𝜒 ′
,

which indicates primarily that 𝑒 ′ is an expression that will allocate an object containing the given

fields and methods (with less precise initializers and bodies). The variable 𝑥 indicates what variable

denotes this or self in the method bodies, and the extensibility 𝜒 ′
indicates whether the structural

object defined by 𝑒 ′ is extensible with additional fields after allocation. Its first selected rule indicates

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:13

that a lambda expression can be used whenever there are no fields, only a _ method (with no

self-reference), and the value does not need to be extensible. Its second selected rule indicates that

a record can always be used and will be extensible. Its third selected rule permits a field to be added

after the object is created (provided the object is extensible). And its fourth selected rule permits

a method (with no self-reference) to instead be represented by a field initialized to a functional

structural object. Thus this judgement captures the flexibility of structural objects.

Using this judgement, the first new rule indicates that a lambda expression can be relaxed to

any structural object with a corresponding _ method (including a record), and the second new
rule indicates that a record expression can be relaxed to any extensible structural object with the

corresponding fields and methods.

The final new rule is one of the main contributions of the paper. It says that a class-instance

allocation can be relaxed to a structural-object allocation with the same fields and methods of the

class provided the class is new, i.e. not found in the less precise nominal hierarchy. This indicates that,

in MonNom, the transition fooey-C =⇒ fooey-D in Figure 1—solidifying a structural record into a

nominal class—preserves the behavior of the program (provided the extensibility of the record was

no longer needed, and the fields and methods were ascribed the appropriate types). It also indicates

that, in MonNom, any place where a class instance would work (aside from casts to that same class)

will also work with a lambda or record with the same structure as the class instance despite their
lack of nominal structure (and, in particular, their lack of declared nominal interfaces). Thus this

rule, in combination with the gradual guarantee, captures both the cross-paradigm migration and

interoperation guarantees of MonNom.

The final expression-precision rule basically encodes a theorem of the system with regards to

nominal subtyping. Consider the case where 𝜏 and 𝜏𝑥 respectively equal 𝜏 ′ and 𝜏 ′𝑥 , so that this rule

applies when 𝜏 is a nominal subtype of 𝜏𝑥 . With this precision rule, the static gradual guarantee

implies that restricting the type of a variable to a nominal subtype that its expression necessarily

belongs to—such as in the less precise program of the final rule—always improves the typeability

of the program (i.e. fewer compile-time errors). Similarly, the dynamic gradual guarantee implies

that doing so always improves the executability of the program (i.e. fewer run-time errors). We

will refer to these properties respectively as static subsumption and dynamic subsumption, which
are closely related to the Liskov substitution principle [Liskov and Wing 1994].

4.3 The Static Gradual Guarantee
MonNom ensures a compile-time guarantee about transitioning between structural and nominal

code, which is our adaptation of the static gradual guarantee [Siek et al. 2015a].

Theorem 4.1 (Static Gradual Guarantee). For all programs satisfying ⊢ P ⊑ P ′, if ⊢ P, ⊢ HP′ ,
and HP′ ⊢ SP′ : HP′ hold, then so does ⊢ P ′.

This theorem (whose proof is in Appendix A.3.3) ensures that if a program is well-typed then

any less precise (i.e. more dynamically typed) program is necessarily also well-typed (provided

at least its inheritance hierarchy and signature are well-formed
2
). In particular, according to our

definition of precision, this implies that a program is well-typed if it is possible to add classes and

interfaces, replace all records and lambdas with allocations of classes, and replace all occurrences

of dyn with nominal types such that the resulting program would be well-typed. In other words,

any program with a viable path towards being statically well-typed is guaranteed to be gradually

well-typed, even if that path requires changing structural code to nominal code.

2
The issue is that signatures of methods in sub-classes/interfaces and super-classes/interfaces need to be compatible with

each other, so if one decides to relax a program by replacing some type in a method signature with dyn in some interface,

then one must make sure to similarly relax the method’s signature in inheriting classes and interfaces.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:14 Fabian Muehlboeck and Ross Tate

Observation 𝑜 ::= false | true | ∞ | error

⊢ P ↠ 𝑜 ⊢ P { ˇP 𝑒1 = 𝑒 ˇP 𝐻1 = ∅
∀𝑖 < 𝑛. ˇP ⊢ 𝐻𝑖 | 𝑒𝑖 → 𝐻𝑖+1 | 𝑒𝑖+1 𝑒𝑛 = 𝑣 𝑜 = 𝑣

⊢ P ↠ 𝑜

⊢ P { ˇP 𝑒1 = 𝑒 ˇP 𝐻1 = ∅
∀𝑖 < 𝑛. ˇP ⊢ 𝐻𝑖 | 𝑒𝑖 → 𝐻𝑖+1 | 𝑒𝑖+1

ˇP ⊢ 𝐻𝑛 | 𝑒𝑛 → error

⊢ P ↠ error

⊢ P { ˇP 𝑒1 = 𝑒 ˇP 𝐻1 = ∅
∀𝑖 ∈ N. ˇP ⊢ 𝐻𝑖 | 𝑒𝑖 → 𝐻𝑖+1 | 𝑒𝑖+1

⊢ P ↠ ∞

Fig. 10. Program Semantics

L
o
w
e
r
e
d

Program
ˇP ::= ⟨H | S | ˇI | 𝑒⟩ Method Body

ˇ𝑏 ::= (Γ) ↦→ 𝑒 : 𝜏

Type Context Γ̌ ::= ∅ | Γ̌, 𝑥 Implementation
ˇI ::= ∅ | ˇI;𝑥 : 𝐶 (Γ̌){𝑓 := 𝑒; . . . | 𝑚 ˇ𝑏}

Expression 𝑒 ::= 𝑥 | let ⟨Γ̌⟩ := ⟨𝑒, . . .⟩ in 𝑒 | false | true | 𝑒 == 𝑒
| 𝑒.𝑓 𝛿 | 𝑒.𝑓 𝛿 := 𝑒 | 𝑒.𝑚(𝑒, . . .)𝛿
| new 𝐶 (𝑒, . . .) | new _⟨ ˇ𝑏⟩ | new 𝑥 := {𝑓 := 𝑒; . . . | 𝑚 ˇ𝑏; . . .}
| ℓ | ⟨ℓ .𝑓 ⟩ | 𝐶 (𝑣, . . .){𝑒, . . .} | cast𝛾 𝑒 to 𝜏 | impose𝛾 ℓ .𝑚 on 𝑒

Location ℓ Value 𝑣 ::= false | true | ℓ | ⟨ℓ .𝑓 ⟩
Guard Mode 𝛾 ::= ∅ | dyn Dispatch Mode 𝛿 ::= ⟨𝜏⟩

Fig. 11. Lowered Grammar

5 SEMANTICS
The semantics ofMonNomwas carefully designed to simultaneously ensure our transition guarantee

and to enable an efficient implementation. Before going into some of the more detailed rules,

Figure 10 provides the overall structure of how we formalize our semantics. First, the program

is lowered. Second, the program state is initialized to the lowering of the main expression of the

program and to the empty heap. Lastly, the program state is repeatedly reduced until either arriving

at some (Boolean) value, erring, or simply running ad infinitum, each of which we consider to be

the observable semantics of the program.

5.1 Lowering
We define the semantics of MonNom by translating (surface) programs to lowered programs. The

grammar of these lowered programs is shown in Figure 11. Note that there is no change to the

inheritance hierarchy or the signature when lowering; the only changes are to expressions and

components that depend on expressions (such as the implementation).

The primary change to expressions is in the second row, where we make field access and method

invocation explicitly distinct (translating application to _-invocation), and attach dispatch modes
to each of the forms of type-directed object-access/mutation in order to keep track of the type

of the receiver the program was compiled with. Our implementation uses this type information

to determine how the invocation should be implemented: a v-table lookup, an interface-method

lookup, or a structural-dictionary lookup. The dispatch mode is even semantically relevant, as it

affects the casting behavior of the invocation, though MonNom’s dynamic-subsumption property

guarantees that using the receiver’s synthesized type imposes the least-restrictive casts compared

to any of its nominal supertypes.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:15

H | S | Γ ⊢ 𝑒 ↓ 𝜏 { 𝑒 H | S | Γ ⊢ 𝑒 { 𝑒

H | S | Γ ⊢ 𝑒 ↓ 𝜏 { castdyn 𝑒 to 𝜏

H | S | Γ ⊢ 𝑒 { 𝑒

H | S | Γ ⊢ 𝑒 ↑ 𝜏 H | S | Γ ⊢ 𝑒 { 𝑒

H | S | Γ ⊢ 𝑒.𝑓 ↑ 𝑒.𝑓 ⟨𝜏 ⟩

H | S | Γ ⊢ 𝑒 ↑ 𝜏 H | S | Γ ⊢ 𝑒 { 𝑒

S ⊢ 𝜏 .𝑓 : 𝜏𝑓 H | S | Γ ⊢ 𝑒𝑓 ↓ 𝜏𝑓 { 𝑒𝑓

H | S | Γ ⊢ 𝑒.𝑓 := 𝑒𝑓 { 𝑒.𝑓 ⟨𝜏 ⟩
:= 𝑒𝑓

H | S | Γ ⊢ 𝑒 ↑ 𝜏
H | S | Γ ⊢ 𝑒 { 𝑒 S ⊢ 𝜏 ._(𝜏1, . . .) : 𝜏_

∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖 { 𝑒𝑖

H | S | Γ ⊢ 𝑒 (𝑒1, . . .) { 𝑒._(𝑒1, . . .) ⟨𝜏 ⟩

H | S | Γ ⊢ 𝑒 ↑ 𝜏
H | S | Γ ⊢ 𝑒 { 𝑒 S ⊢ 𝜏 .𝑓 (𝜏1, . . .) : 𝜏𝑓

∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖 { 𝑒𝑖

H | S | Γ ⊢ 𝑒.𝑓 (𝑒1, . . .) { 𝑒.𝑓 (𝑒1, . . .) ⟨𝜏 ⟩

⊢ P { ˇP H | S ⊢ I { ˇI H | S | ∅ ⊢ 𝑒 ↓ B { 𝑒

⊢ ⟨H | S | I | 𝑒⟩ { ⟨H | S | ˇI | 𝑒⟩

Fig. 12. Lowering (selected rules ofH | S | Γ ⊢ 𝑒 { 𝑒 from Figure A.17)

Heap 𝐻 ::= ∅ | 𝐻 ; ℓ ↦→ ℎ Mark ` ::= init | mut
Heap Value ℎ ::= 𝐶 (𝑣, . . .){𝑣, . . .} | _]𝑏 | {𝑓 ↦→` 𝑣 ; . . . | 𝑚𝑏; . . .}] Imposition] ::= ∅ |], 𝐼

Fig. 13. Heap Grammar

The second change is the various constructs added in the final row. Most of these arise during

execution. The only one that arises during lowering is cast. The cast is labeled with a guard mode
indicating whether or not the cast can err; unguarded (∅) casts cannot err whereas guarded (dyn)
casts can.

Figure 12 presents the most interesting rules for lowering programs. There are two judgements

for lowering expressions: one corresponding to when the typing rules checked for a particular

type, and one corresponding to when the typing rules synthesized the type from the expression.

For lowering checked expressions, one simply inserts a guarded cast to the expected type. For

lowering unchecked expressions, note that the synthesized type of the receiver is used as the

dispatch mode of the object-access/mutation operations. Note, also, that some expressions can be

lowered to either a field access followed by a _-invocation or to simply a named method invocation.

In MonNom, we ensure that the non-determinism of lowering does not affect the program’s

observable semantics. (The proof is in Appendix A.9.5, which also provides a more precise theorem

that ensures specifically lowering is observationally deterministic without requiring reduction to

be observationally deterministic.)

Theorem 5.1 (Determinism). For all programs satisfying ⊢ P, any two observations satisfying
⊢ P ↠ 𝑜 and ⊢ P ↠ 𝑜 ′ are necessarily equal.

5.2 The Heap
After lowering, during execution, MonNom uses a heap, both due to the stateful nature of its

objects, and to implement gradual typing efficiently. As shown in Figure 13, the heap is a (partial)

mapping of locations to heap values, which are class instances, lambda closures, or records. Note

that record fields have a marking ` that indicates whether the field has its initial value or has been

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:16 Fabian Muehlboeck and Ross Tate

ˇP | 𝐻 ⊢ 𝑣 .𝑚 {𝛾
ˇ𝑏 ℓ ↦→ _] ˇ𝑏 ∈ 𝐻

ˇP | 𝐻 ⊢ ℓ ._ {dyn ˇ𝑏

ℓ ↦→ {. . . | 𝑚1

ˇ𝑏1; . . .}] ∈ 𝐻

ˇP | 𝐻 ⊢ ℓ .𝑚𝑖 {dyn ˇ𝑏𝑖

ℓ ↦→ 𝐶 (𝑣1, . . .){. . .} ∈ 𝐻 𝑥 : 𝐶 (𝑥1, . . .){. . . | 𝑚1

ˇ𝑏1; . . .} ∈ ˇI ˇP
ˇP | 𝐻 ⊢ ℓ .𝑚𝑖 {∅ ˇ𝑏𝑖 [𝑥 ↦→ ℓ, 𝑥1 ↦→ 𝑣1, . . .]

ˇP | 𝐻 ⊢ ℓ .𝑓 {𝛾
ˇ𝑏

ˇP | 𝐻 ⊢ ⟨ℓ .𝑓 ⟩._ {𝛾
ˇ𝑏

ˇP | 𝐻 → 𝐻 ⊢ ℓ .𝑚 {𝛾
ˇ𝑏

ˇP | 𝐻 ⊢ ℓ .𝑚 {𝛾
ˇ𝑏

ˇP | 𝐻 → 𝐻 ⊢ ℓ .𝑚 {𝛾
ˇ𝑏

ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . ; 𝑓 ↦→init 𝑣 ; 𝑓 ′

1
↦→`′

1

𝑣 ′
1
; . . . | 𝑚1

ˇ𝑏1; . . .}] ∈ 𝐻
ˇP | 𝐻 ⊢ 𝑣 ._ {𝛾

ˇ𝑏

𝐻 ′ = 𝐻 [ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . ; 𝑓 ↦→init 𝑣 ; 𝑓 ′

1
↦→`′

1

𝑣 ′
1
; . . . | 𝑚1

ˇ𝑏1; . . .}]]
ˇP | 𝐻 → 𝐻 ′ ⊢ ℓ .𝑓 {dyn ˇ𝑏

Fig. 14. Heap Semantics (selected judgements from Figure A.18)

mutated, the purpose of which we will explain in Section 5.6. More importantly, lambda closures

and records have a list of “imposed” interfaces that is initially empty but is expanded as they get

cast to interfaces during execution. This list guarantees the heap value has any _-method expected

by these interfaces (whereas named methods are checked on demand), and it affects how the values

returned by methods of the heap value are cast.

The semantics use various judgements for operating on the heap. In Figure 14, we show only the

two more interesting judgements. The first judgement is for fetching the body of a value’s method.

The second judgement is for fetching the body of a (typed) location’s method (potentially from a

field). The details of their rules will be discussed in Section 5.6.

5.3 Values
Our calculus has only four kinds of values, though one of those—locations—indirectly represents

three kinds of heap values. Up until now we have not discussed ⟨ℓ .𝑓 ⟩, which denotes a bound

method. These arise from the need for a class or record with a method needing to be more precise

than a record with a field containing a functional value, combined with the need for an untyped

field access followed by application to be semantically equivalent to an untyped method invocation.

Thus the value ⟨ℓ .𝑓 ⟩ denotes the functional value resulting from accessing a method as if it were

an (untyped) field (as shown in the first rule in Figure 17). In order for transitions to preserve the

behavior of (==), it is important that two separate untyped field accesses of the same method return

the same value, which is why we formalize bound methods as a value rather than a heap value.

That said, in our implementation we implement these as a variant of lambda closures—using other

techniques to ensure uniqueness—that are artificially restricted to disallow casting in order to be

faithful to the calculus.

5.4 Casts
MonNom has two casting operators: cast𝛾 𝑒 to 𝜏 and impose𝛾 ℓ .𝑚 on 𝜏 . The first operator uses the
first judgement in Figure 15 to cast the value to the expected type, and the second operator looks

up the impositions on the given ℓ , then uses the third judgement in Figure 15 to determine the

applicable return types the imposed interfaces expect the method𝑚 to have, and finally casts the

value according to those types using the first judgement (as shown in the relevant rule in Figure 17).

The first two rules of casting simply check to see if the value already has the expected types. The

second two rules specify a form ofmonotonic casts [Siek et al. 2015b; Vitousek et al. 2017]—checking
if the location is compatible with the expected type, and then modifying the location’s state in the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:17

ˇP | 𝐻 → 𝐻 ⊢ 𝑣 : ®𝜏

ˇP | 𝐻 → 𝐻 ⊢ 𝑣 : ∅

ˇP | 𝐻 → 𝐻 ′ ⊢ 𝑣 : ®𝜏 ˇP | 𝐻 ′ ⊢ 𝑣 : 𝜏

ˇP | 𝐻 → 𝐻 ′ ⊢ 𝑣 : ®𝜏, 𝜏
ˇP | 𝐻 → 𝐻 ′ ⊢ ℓ : ®𝜏
ℓ ↦→ _] ˇ𝑏 ∈ 𝐻 ′

𝐻 ′′ = 𝐻 ′[ℓ ↦→ _],𝐼 ˇ𝑏]
ˇP | 𝐻 → 𝐻 ′′ ⊢ ℓ : ®𝜏, 𝐼

ˇP | 𝐻 → 𝐻 ′ ⊢ ℓ : ®𝜏
ℓ ↦→ {𝑓1 ↦→`1

𝑣1; . . . | 𝑚1

ˇ𝑏1; . . .}] ∈ 𝐻 ′ ∀𝑠 . S ˇP ⊢ 𝐼 ._𝑠 =⇒ ∃𝑖 . 𝑚𝑖 = _

𝐻 ′′ = 𝐻 ′[ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . | 𝑚1

ˇ𝑏1; . . .}],𝐼]
ˇP | 𝐻 → 𝐻 ′′ ⊢ ℓ : ®𝜏, 𝐼

ˇP | 𝐻 ⊢ 𝑣 : 𝜏

ˇP | 𝐻 ⊢ 𝑣 : dyn ˇP | 𝐻 ⊢ false : B ˇP | 𝐻 ⊢ true : B

ℓ ↦→ 𝐶 (. . .){. . .} ∈ 𝐻

H ˇP ⊢ 𝐶 ◀ 𝜏

ˇP | 𝐻 ⊢ ℓ : 𝜏

H ˇP | 𝐻 ⊢ ℓ ↦→]

H ˇP ⊢] ◀ 𝜏

ˇP | 𝐻 ⊢ ℓ : 𝜏

S ⊢ (]).𝑚 : ®𝜏

S ⊢ (∅).𝑚 : ∅
S ⊢ (]).𝑚 : ®𝜏 S ⊢ 𝐼 .𝑚(. . .) : 𝜏

S ⊢ (], 𝐼).𝑚 : ®𝜏, 𝜏
S ⊢ (]).𝑚 : ®𝜏 �𝑠 . S ⊢ 𝐼 .𝑚𝑠

S ⊢ (], 𝐼).𝑚 : ®𝜏

Fig. 15. Cast Semantics (selected judgements from Figure A.19)

heap to permanently impose the expected type upon it. Note that in MonNom only interface types

can be imposed in this manner—structural objects cannot be cast to class types. Also note that

MonNom does not impose interface types upon class instances—class instances are restricted to

just the explicitly inherited interfaces, both enabling their implementations to be optimized for that

specific set of interfaces and enabling casting of nominal values to be implemented using efficient

nominal subtyping.

When imposing an interface upon a structural object, our semantics does not check for presence

or compatibility of all methods expected by the interface. We make this choice for two reasons.

First, besides migration, one application we aim to serve in this work is facilitating prototyping

and testing, wherein it is common for the developer to want to implement only the subset of the

methods expected by the interface that is actually needed for the focused task at hand (without

having to provide tedious stubs for the unneeded methods). Second, eagerly checking all these

methods is costly and offers no performance when using the method-invocation techniques we

discuss in Section 6.2. However, we do eagerly check that if the interface provides a _-method then

so does the structural object. The distinguished nature of that name enables some performance

optimizations by using an optimized memory layout for all values with such a method, and so to

be memory safe our implementation needs to eagerly check that the value has a _-method and

therefore an optimized memory layout, as we will discuss in Section 6.4.

5.5 Errors and Safety
The MonNom calculus makes a distinction between getting stuck and erring. In particular, while

an error does arise from getting stuck, it can only happen in specific expressions where the

implementation knows to explicitly check for such conditions. We formalize this semantics for

errors in Figure 16.

Notice that nearly every potentially erroneous redex involves either a dynamic dispatch mode or

a dynamic guard mode, reflecting the fact that statically typed code and unguarded casts should not

err. There is, however, one exception: invocation of named methods of interfaces. This is due to the

fact that our casts of structural objects to interfaces do not check for the presence or compatibility

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:18 Fabian Muehlboeck and Ross Tate

Potentially Erroneous Redex Y ::= 𝑣 .𝑓 ⟨dyn⟩ | 𝑣 .𝑓 ⟨dyn⟩
:= 𝑣 | ℓ .𝑓 (𝑣, . . .) ⟨𝐼 ⟩ | 𝑣 .𝑚(𝑣, . . .) ⟨dyn⟩

| castdyn 𝑣 to 𝑁 | imposedyn ℓ .𝑚 on 𝑣

ˇP ⊢ 𝐻 | 𝑒 → error �𝐻 ′, 𝑒 ′. ˇP ⊢ 𝐻 | Y → 𝐻 ′ | 𝑒 ′

ˇP ⊢ 𝐻 | 𝐸 [Y] → error

Fig. 16. Error Semantics (where Evaluation Contexts 𝐸 are defined in Figure A.20)

of named methods. Nonetheless, we can implement this without adding significant dynamic checks

to typed invocation by using the technique described in Section 6.2.

By distinguishing erring from getting stuck, we can formalize the type safety of MonNom.

Theorem 5.2 (Safety). For any program satisfying ⊢ P, there exists an observation satisfying
⊢ P ↠ 𝑜 .

This theorem (whose proof is in Appendix A.8.1) indicates that well-typed programs only get

stuck if they reach a potentially erroneous redex. We cannot ensure that well-typed programs do

not err due to the presence of dynamic typing in MonNom, though one can show that the “statically

typed” subset of MonNom would be free of errors.

5.6 Invocation
Being an object-oriented language, method invocation is a core feature ofMonNom. It is important to

remember that every invocation has two sides: the caller and the callee. In MonNom, lowering takes

care of the caller side by determining the dispatch mode to use and inserting casts of the arguments

to the parameter types expected by that dispatch mode. Thus the three rules for invocation shown

in Figure 17 focus on the callee side.

Each of these three rules uses three different (but closely related) judgements to operate on

the heap (recall Figure 14) in order to lookup the body of the given method. The first rule for

untyped (i.e. ⟨dyn⟩) invocation simply looks up a body of amethod directly provided by the receiver.

The second rule for untyped invocation handles the case where the receiver directly provides a

field of the given name, extracting the method body from the _-method implementation provided

by that field’s value. Together these two cases ensure that the two ways to invoke a method—

directly, or applying to the result of a field access—work equivalently in untyped code. The rule

for typed (i.e. ⟨𝑁 ⟩) invocation uses a judgement that effectively combines these two cases, but

with an extra step: if the implementation is provided by a (record) field, the field is checked to

have never been mutated. Common implementations of and optimizations for method invocation

in major nominal object-oriented languages assume methods are immutable, so this extra step

dynamically asserts that those assumptions are valid for the structural interoperation at hand.

In particular, whereas with the untyped expression 𝑒.𝑓 (𝑒1, . . .) one determines the value of the

field before evaluating the arguments, we found it useful for typed method invocation to lookup

the method while simultaneously supplying its already evaluated arguments, and so for these to

be equivalent—so that the dynamic gradual guarantee holds—we need the field to not have been

mutated in the interim.

After the method body has been looked up, it is supplied the respective arguments, casting them

to the types expected by the method body. For untyped invocation, these casts are always guarded,

where for typed invocation they are unguarded if the receiver was a class instance. Furthermore, the

value returned by the call is checked to be compatible with the expected return type. For untyped

invocation, this check is a no-op since the caller is untyped (though still having the no-op in the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:19

ˇP ⊢ 𝐻 | 𝑒 𝐻−→ 𝐻 | 𝑒
ˇP | 𝐻 ⊢ ℓ .𝑓 {𝛾

ˇ𝑏

ˇP ⊢ 𝐻 | ℓ .𝑓 ⟨dyn⟩ ∅−→ 𝐻 | ⟨ℓ .𝑓 ⟩
ˇP | 𝐻 ⊢ 𝑣 .𝑚 {𝛾 (𝑥1 : 𝜏1, . . .) ↦→ 𝑒 : 𝜏

ˇP ⊢ 𝐻 | 𝑣 .𝑚(𝑣1, . . .) ⟨dyn⟩
∅−→ 𝐻 | cast∅ let ⟨𝑥1, . . .⟩ := ⟨castdyn 𝑣1 to 𝜏1, . . .⟩ in 𝑒 to dyn

ˇP | 𝐻 ⊢ ℓ .𝑓 ↦→ 𝑣 ˇP | 𝐻 ⊢ 𝑣 ._ {𝛾 (𝑥1 : 𝜏1, . . .) ↦→ 𝑒 : 𝜏

ˇP ⊢ 𝐻 | ℓ .𝑓 (𝑣1, . . .) ⟨dyn⟩
∅−→ 𝐻 | cast∅ let ⟨𝑥1, . . .⟩ := ⟨castdyn 𝑣1 to 𝜏1, . . .⟩ in 𝑒 to dyn

ˇP | 𝐻 → 𝐻 ′ ⊢ ℓ .𝑚 {𝛾 (𝑥1 : 𝜏1, . . .) ↦→ 𝑒 : 𝜏

ˇP ⊢ 𝐻 | ℓ .𝑚(𝑣1, . . .) ⟨𝑁 ⟩ ∅−→ 𝐻 ′ | impose𝛾 ℓ .𝑚 on let ⟨𝑥1, . . .⟩ := ⟨cast𝛾 𝑣1 to 𝜏1, . . .⟩ in 𝑒
ˇP | 𝐻 → 𝐻 ′ ⊢ 𝑣 : 𝜏

ˇP ⊢ 𝐻 | cast𝛾 𝑣 to 𝜏 ∅−→ 𝐻 ′ | 𝑣

H ˇP | 𝐻 ⊢ ℓ ↦→] S ˇP ⊢ (]).𝑚 : ®𝜏 ˇP | 𝐻 → 𝐻 ′ ⊢ 𝑣 : ®𝜏
ˇP ⊢ 𝐻 | impose𝛾 ℓ .𝑚 on 𝑣

∅−→ 𝐻 ′ | 𝑣
ˇP ⊢ 𝐻 | 𝑒 → 𝐻 | 𝑒 ˇP ⊢ 𝐻 | 𝑒 𝐻 ′′

−−→ 𝐻 ′ | 𝑒 ′ �ℓ, ℎ, ℎ′. ℓ ↦→ ℎ ∈ 𝐻 ′ ∧ ℓ ↦→ ℎ′ ∈ 𝐻 ′′

ˇP ⊢ 𝐻 | 𝑒 → 𝐻 ′
;𝐻 ′′ | 𝑒 ′

Fig. 17. Lowered-Expression Semantics (selected rules from Figure A.20)

formal semantics facilitates the proof of the dynamic gradual guarantee). For typed invocation, if

the receiver was structural then we need to check that the returned value matches the return types

expected of all the interfaces that have been imposed upon the receiver. This necessarily includes

the interface specified in dispatch mode, guaranteeing type safety. But it is important that we cast

the value to all interfaces imposed on the location, as imposing just the interface the invocation
happened to be typed with would fail to satisfy dynamic subsumption.

5.7 The Dynamic Gradual Guarantee
At last we can formally state our run-time guarantee about transitioning between structural and

nominal code with a property known as the dynamic gradual guarantee [Siek et al. 2015a].

Theorem 5.3 (Dynamic Gradual Guarantee). For all programs satisfying ⊢ P, ⊢ P ′, and
⊢ P ⊑ P ′, any observation satisfying ⊢ P ↠ 𝑜 either also satisfies ⊢ P ′ ↠ 𝑜 or is error; and for any
observation satisfying ⊢ P ′ ↠ 𝑜 , either ⊢ P ↠ 𝑜 also holds or ⊢ P ↠ error holds.

This theorem (whose proof is in Appendix A.9.4) ensures that well-typed more precise and less

precise programs are observably equivalent except that the former can err when the latter does not.

As mentioned earlier, statically typed MonNom is error free, which in turn means this theorem

implies that a program does not err if it is possible to add interfaces, replace all records and lambdas

with classes implementing those interfaces, and replace all occurrences of dyn with nominal types

such that the resulting program statically type-checks. In other words, in combination with the

static gradual guarantee, any program with a viable path towards being statically well-typed (and

so necessarily never erring) is guaranteed to be gradually well-typed and to never err, even if that

path requires changing structural code to nominal code.

Of course, this is great in theory, but in practice gradual typing has a history of significant

issues with large overheads caused by the casts ensuring safety [Takikawa et al. 2016]. Next we

demonstrate that the design of MonNom enables an efficient implementation.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:20 Fabian Muehlboeck and Ross Tate

6 IMPLEMENTATION
We have implemented MonNom with an ahead-of-time compiler using LLVM as the backend. Our

implementation extends the calculus in many ways, including more primitives as well as a standard

library for common data structures. Importantly, our implementation adds generics to MonNom.

This makes implementing monotonic casts efficiently more challenging as we must account for

type arguments in impositions (particularly in the function interfaces provided by our standard

library and used in the relevant benchmarks). In the interest of space, though, here we discuss

only the techniques that we think are most critical to achieving our performance for features of

MonNom present in the calculus.

6.1 Value Representation
We represent primitive values differently depending on whether they are statically or dynamically

typed. In particular, primitive values are unpacked when statically typed and packed or boxed when

dynamically typed. For dynamically typed values, the lower two bits differentiate between (aligned)

references and the two kinds of packed primitives—integers and floating-point numbers—adapting

the packing technique from Chambers et al. [1989]. If the low bits are 11, the packed value represents
the signed integer resulting from arithmetic-right-shifting the value by 2. If the low bits are 01 or

10, the packed value represents the IEEE-754 floating-point number resulting from funnel-shifting

the value right by 3 (moving the third bit to be the sign bit); the effect of this is that all floats with

small-magnitude exponents (i.e. signed 10-bit) can be packed rather than boxed. (When boxing

floats, we memoize the statically allocated values for positive and negative zero.) This packing

scheme prevents the performance of both integer-intensive and floating-point-intensive programs

from degrading severely due to heap allocations in untyped and mixed programs.

6.2 Typed Method Invocation and Call Tags
One of the key challenges to implementing MonNom is supporting typed method invocations on

structural objects that were cast to interfaces they were not created to support, ideally without

slowing down the fast path where the receiver is typed.

Originally, we implemented interface-method dispatch using interface tables. In this strategy,

the object descriptor (which also provides, say, the v-table of class methods) provides the list of

interfaces implemented by the object, and in each case providing a method table pointing to the

implementations of each interface method. When we cast a structural object, we extended its

interface table with a newly allocated method table for the interface that was filled with stubs

that would be filled on demand. However, these allocations were costly, and we found ourselves

employing speculation and heuristics in an attempt to precompute these tables, which we worried

might not scale well and could lead to unpredictable performance cliffs.

More recently, we developed an extension of interface-method tables [Alpern et al. 2001] that

bridges this gap—an extension we refer to as call tags. An interface-method table provides a fixed-

sized array of code pointers, and every interface method is globally assigned an index where its

implementation lies in this array. But an object can implement multiple interface methods assigned

to the same index. To address this conflict, when one calls the code pointer at the corresponding

index, in addition to the explicit arguments of the method one also passes the identifier of the

interface method. That way, if the receiver has multiple implementations corresponding to that

index, it can first switch on that identifier before doing anything else, which works even if those

methods have different arities, signatures, and even calling conventions.

In typed languages, the type system guarantees that the passed identifier will be recognized by

the switching code. But in the untyped setting, we cannot make such a guarantee, and matters get

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:21

very complicated when one realizes that even the size of the stack frame cannot be known without

recognizing that identifier. To resolve this, we made it so that the method identifier—i.e. call tag—

itself provides the code pointer to jump towhen the call tag is not recognized—leaving the arguments

and return address untouched. In this way, the “fall-back” handler for an interface method can

convert all the arguments to their untyped representations, then invoke the corresponding untyped

method on the argument specifying the receiver, and cast the returned value to the types expected

by the receiver’s imposed interfaces.

By using call tags, we get an implementation strategy wherein the fast path for typed invocation

on typed receivers is practically untouched, and the slow path has only small indirections employing

the necessary coercions. Using this, we can simply have an object descriptor for each class and for

each allocation site of a structural object—no need for speculation or heuristics.

6.3 Untyped Method Invocation
An untyped method invocation is semantically equivalent to a field access followed by an argument

application. However, implementing one this way would be inefficient when the object directly

provides a method implementation because it creates an intermediate bound-method value. But

implementing it simply as a method invocation would be incorrect in the case where the method is

provided by a field whose value is changed during evaluation of the arguments.

To address these problems, we implement untyped method invocation through two stages. The

first stage is executed just before argument evaluation. Its job is to determine the call-tag handler

and the receiver to use later. Then the arguments are evaluated. Afterwards, the second stage

simply calls the previously determined call-tag handler with a call tag indicating the number of

arguments, providing the previously determined receiver and the values of the arguments. Thus

the first stage does the bulk of the work.

For the first stage, during compilation a hashtable is inlined directly into the object descriptor.

This hashtable lists all of the named methods directly provided by the object as well as some of the

fields directly provided by the object upon allocation. For named methods, the entry provides a

pointer to the precompiled call-tag handler to use for the second stage. For selected fields, the entry

provides the offset of the field within the object. Only fields with non-primitive types are listed,

which both avoids fields that cannot provide a method implementation and ensures the values

of listed fields are necessarily references if and only if their lower two bits are 00. Executing the
first stage involves first looking up the corresponding entry in the receiver’s object descriptor. If a

method entry is found, then the specified call-tag handler and the same receiver are forwarded to

the second stage. If a field entry is found, then the field’s value is checked to be a reference with a

_-method, in which case that _-method handler and that field’s value are forwarded to the second

stage. If no entry is found and the object is a record, its additional-field dictionary is searched for

the appropriate field and handled as with built-in fields. Otherwise, the invocation fails.

6.4 _-Methods
Our implementation (and consequently casting semantics) employs special treatment for _-methods.

If an object implements a _-method, room for a call-tag-handling function pointer is reserved at

the head of the object itself, rather than in its descriptor. This prevents the need to load the object

descriptor when invoking _-methods.

On the callee side, for class instances the function switches on the corresponding call tags for

all implemented interfaces, along with a special call tag for just the class, as well as the call tag of

the appropriate arity that is used for untyped method invocation. Call tags proved to be helpful

here because our implementation supports nominal subtypings such as Int ≤ Object as well as

generics, and as such compatible method signatures can still represent objects differently (e.g. boxed

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:22 Fabian Muehlboeck and Ross Tate

vs. unboxed integers); having a call tag for each interface then enables quick conversions before

jumping to the main implementation of the method. (Note that we explored the option of restricting

method-signature compatibility in order to ensure consistent object representation and simply use

standard functions, but our experiments found that standard functions offered no performance

improvements over call tags.) For structural objects, the function only switches on the (untyped)

call tag of the appropriate arity, but if no match is found it jumps to the fall-back handler provided

by the call tag, just as with named methods.

On the caller side, typed invocations of _-methods simply load the function pointer from the

standard offset within the object (forgoing the object descriptor entirely) and call it with the

appropriate call tag. Because our casting semantics for casting to interfaces with a _-method

eagerly checks that the structural object has some such method, this operation is guaranteed to be

safe even for structural objects masquerading as their imposed interfaces. For untyped invocations

though, we first have to check if such a _-method exists. One way to do so would be to put a flag in

the object itself, but that would waste memory. Another way to do so would be to put a flag in the

object descriptor, but the whole point of the optimization is to avoid loading from the descriptor.

So we encoded a flag in the address of the descriptor. In particular, we use memory alignment to

ensure that the address of the descriptor has a specific low bit set if and only if the object has a

_-method and consequently the corresponding function pointer at the standard offset. (We could

have also taken advantage of the fact that alignment ensures the low bits of any object-descriptor

address are always unused, but this would require adding bit-masking operations to typed code.)

6.5 Fields
Typed field-access/mutation is implemented using predetermined offsets. For untyped field ac-

cess/mutation, if the field is typed then we have to account for potential casts and change in

representation, and if the field belongs to a record then we need mutations of the field to mark

it appropriately. Rather than use an inlined data structure listing field information in the object

descriptor and a corresponding generalized read/write operation, the object descriptor provides

two function pointers accepting a receiver and a field identifier. The former returns the (packed)

value of identified field. The latter accepts an additional (packed) value that it updates the identified

field to. For classes and records, the implementations of these functions switch to the fields known

at compile time. For records, if the identifier is not recognized then the additional-fields dictionary

is searched for a corresponding entry.

7 EVALUATION
7.1 Methodology
Following Takikawa et al. [2016], it is important to evaluate the performance of gradually typed

programs in different stages of program evolution to see if run-time checks introduce prohibitive

worst- or average-case overheads. This is often done by taking a fully typed program and removing

type annotations from modules one by one (in varying order), and then evaluating program

performance on each of the intermediate configurations. In the case of the work presented here,

the picture is a little more complicated as we have an additional axis of migration—structural

vs. nominal. Furthermore, type annotations involving class types can only be added after the

corresponding records have been converted to class allocations. This means both that there are

more variables to toggle and that not all these toggles are independent. In particular, from a fully

typed nominal program we generate different configurations by

(1) removing type annotations from the fields, method signatures, and method bodies of a class

(including static methods), except those necessary for inheriting typed methods,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:23

(2) removing a class (and all type annotations referring to that class) entirely and replacing uses

of its constructor with record or lambda expressions (preferring the latter when possible)

whose method signatures and bodies are typed according to the typing discipline of the code

they occur within,

(3) and/or removing an interface (and all type annotations referring to that interface) entirely.

We then run all the valid generated configurations and compare their running times. The expectation

is that running times decrease while going from left to right, though the mixed configurations in

the middle may suffer from overheads due to casts and cross-paradigm indirections.

The following experiments were run on an Intel® Core™ i7-8700 CPU with 16GB main memory

running Windows 10 on minimal activity. For each configuration, the reported running time is the

average over 10 runs (each of which were measured after first performing warm-up runs).

7.2 Benchmarks
MonNom is a new language with a unique set of features for which we built everything from the

ground up. As such, there exists no corpus of programs in the language, and its standard library is

rather small. We keep adding new code and benchmarks as we develop MonNom further, but for

now, we present the results on three benchmark programs (the MonNom code for which can be

found in Appendix B): sieve, intersort, and float.

7.2.1 sieve. sieve is a key benchmark originally developed by Takikawa et al. [2016] to represent

a worst-case scenario for higher-order casts. It originally consisted of two heavily interacting

modules that may each be typed or untyped, resulting in four configurations. Mixed configurations

of the program feature a particularly large number of interactions (and therefore casts) between

typed and untyped code compared to the rest of the work of the program, making it an important

benchmark for gradual-typing implementations. Due to its small size, it is feasible to increase the

granularity to individual classes and interfaces and vary each according to the possible variations

discussed above. One of the modules contains three lambdas that Nom [Muehlboeck and Tate

2017] had to replace with classes implementing a particular interface.
3
The fully typed MonNom

program is almost identical to the Nom program, except that it represents (nullary) functions with

a generic (nullary-)function (standard-library) interface rather than an interface monomorphized to

(nullary) functions returning integers. Furthermore, MonNom can also replace functional classes

(implementing functional interfaces) with lambdas. Thus, in addition to the two main classes

corresponding to the two original modules, we have three additional classes to generate various

configurations with. Altogether, we consider 272 configurations of sieve for MonNom.

Due to its widespread use in the literature, sieve is also a good candidate to compare our results to

related work, in particular with Grift [Kuhlenschmidt et al. 2019], Monotonic Grift [Kuhlenschmidt

et al. 2018], Typed Racket [Tobin-Hochstadt and Felleisen 2006] (CS 8.0), HiggsCheck [Richards et al.

2017], Transient
4
Reticulated Python [Vitousek et al. 2014, 2017] (PyPy 7.3.5), and Nom [Muehlboeck

and Tate 2017]. There are substantial differences between these languages and MonNom, and as

such not all MonNom configurations have a good corresponding configuration in each of these

languages. So, for each language, we selected MonNom configurations for which there were good

3
In the original benchmark, there was also a temporary pair value, which MonNom could implement as either a record

or class. However, we found the version of this benchmark included in the artifact for Grift did not use this pair value,

instead accessing the values contained in it more directly. Through profiling, we found that the original version of this

benchmark caused the many implementations to spend most of their time collecting garbage due to these temporarily

created pairs. That issue is unrelated to gradual typing, so we went with the version in Grift’s suite that focused more on

gradual-typing-specific performance considerations. Note that the modified version is still memory-intensive, and as such

memory-management techniques—particularly for short-lived objects—do have notable effects on absolute performance.

4
We did not evaluate Monotonic Reticulated Python because we could not get it to support our benchmarks.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:24 Fabian Muehlboeck and Ross Tate

Fig. 18. Measurements for sieve

corresponding configurations that were also representative of how these implementations had

previously been evaluated. We did the same for some major industry object-oriented languages:

Java (HotSpot build 13+13), C# (CoreCLR 6.0.100-preview.7.21379.14), and JavaScript (Node.js 10.19.0).

Figure 18 shows the results of our measurements for sieve. The upper left-hand plot shows

the absolute running times as a scatter-plot in which we group configurations by the number of

steps they are away from the fully typed configuration, plotting them from left (untyped structural)

to right (typed nominal). For each configuration we evaluated in other languages, we plot its

measurement in the same column as its corresponding MonNom configuration.
56

The upper right-hand plot shows the style of usability diagram that is common in the literature,

showing the percentage of configurations that incur less than some amount of overhead compared

to the fully untyped program. We see that Typed Racket has improved substantially over the years

since Takikawa et al. [2016] observed more than 100x overhead on a mixed configuration of this

benchmark. However, both it and Grift still incur overheads of several times the running time of

the fully untyped configuration, while Nom’s and MonNom’s worst-case overheads are measured

in percentages.

The lower left-hand plot of Figure 18 shows the numbers for the MonNom experiments in

more detail. Some configurations are shown in grey while others are shown in black. The black

configurations are those that follow the following “recommended” migration strategy:

5
Though we evaluated sieve in HiggsCheck, its measurements are not shown. We found that the translation of sieve used
by Richards et al. [2017] did not faithfully recreate the quantity or quality of type-boundary crossings that Takikawa et al.

[2016] designed the benchmark to evaluate. When we ran HiggsCheck on our own translation, it failed to complete in any

configuration due to resource exhaustion, which is why HiggsCheck is not represented in the plot even though Node.js is.

6
Transient Reticulated Python’s measurements are not shown because, though there was little relative variation across

configurations, their absolutes far exceeded the upper bound of the current figure across all configurations.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:25

Fig. 19. Measurements for intersort

(1) First, if a record’s fields are frequently accessed by other objects’ methods, turn the record

into a class (though not necessarily with typed fields or methods) and add the appropriate

class type annotations to the other objects’ methods.

(2) Second, if a class’s methods call methods of another class, add type annotations to the other

class before adding type annotations to this class.

The plot—and its counterparts for the other benchmarks—illustrates that this simple migration

strategy for MonNom avoids the most significant pitfalls of gradual-typing overhead, and even

typically leads one towards performance improvements proportionate to their migration effort.

The lower right-hand plot shows four sets of lines. Two lines show what percentage of “recom-

mended” configurations exhibit a given amount of overhead, whereas another two lines show what

percentage of all configurations exhibit a given amount of overhead. The blue lines plot overhead

relative to the fully untyped program, i.e. the dashed blue line in the lower left-hand plot, which is

the traditional metric established by Takikawa et al. [2016]. However, we believe this metric does

not match one’s expectation that programs should generally get faster as more types are added. As

such, the green lines plot overhead relative to a linear baseline between the fully typed and fully

untyped program, i.e. the dotted green line in the lower left-hand plot, which punishes failure to

obtain optimizations in proportion to the migration effort put in.

7.2.2 intersort. While sieve represents a stress test for casting lambdas, intersort is a bench-

mark we designed to model a more typical scenario of specifically object-oriented code migration

by sorting a data structure using just its interface methods. It consists of slightly more components

than sieve, which we therefore group into four modules:

(1) generic interfaces for lists and bidirectional iterators,

(2) generic classes implementing those interfaces with doubly-linked lists,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:26 Fabian Muehlboeck and Ross Tate

Fig. 20. Measurements for float

(3) an implementation of Quicksort using bidirectional iterators,

(4) and a main class generating 100,000 pseudo-random integers and then running Quicksort.

The latter two consist of only static methods and as such cannot be turned into structural objects,

but the list interfaces can be removed from the program, and the classes implementing doubly-

linked lists can be turned into records. We transition each module as a whole unit, resulting in

36 possible configurations.

Our measurements for intersort are shown in Figure 19. They illustrate that MonNom’s

performance generally improves proportionate to migration effort—especially when using our

recommended migration strategy—despite the heavy use of classes and higher-order interfaces.

7.2.3 float. float is a benchmark we have taken from the set of benchmarks used to evaluate

Nom and transient Reticulated Python [Vitousek et al. 2014, 2017]. The benchmark generates a

large list of triples of floats (“points in 3D space”), iterates the list to normalize them, and then

folds the list. This benchmark does not make heavy use of methods, but does make heavy use of

floating-point numbers and of field accesses.

Our measurements for float are shown in Figure 20. For both MonNom and (both versions

of) Grift, we see two cleanly separated sets of configurations. The distinguishing characterestic

is whether the 3D-point data-structure is typed or not, with a notable loss when it is untyped.

However, this loss is much more drastic for Grift than for MonNom. Despite being evaluated on

primarily floating-point-intensive benchmarks, Grift boxes all floating-point numbers onto the

heap, whereas MonNom only boxes floating-point numbers with large-magnitude exponents. We

suspect this choice was critical to MonNom’s success on this floating-point-intensive benchmark.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:27

7.3 Threats to Validity
7.3.1 Overlooked Configurations. While we believe the operations above represent reasonable

and realistic chunks of work that can and will often be done at once, it is possible that we missed

plausible configurations with far worse running times.

7.3.2 Small Corpus. As with every new language and custom compiler/runtime, there is not any

existing code that we could run and the standard library is minimal. In addition, with the larger

variety of program variations and cross-program constraints on which variations are permissible,

creating the benchmarks themselves is a larger task than the usual combination of fully annotated

and fully unannotated files. As such, we thought it important to at least include a known worst-case

benchmark (sieve) and a realistic benchmark (intersort, and possibly float), but our particular
choices might not be sufficiently representative.

7.3.3 Usual Experimental Issues. Although benchmarks were run with consistent settings and

without being affected by other concurrent processes, it is possible we failed to control for other

external factors we were unaware of.

8 CONCLUSION
Nominality is a well-known device towards supporting efficient implementation, even in the

context of gradual typing [Muehlboeck and Tate 2017; Wrigstad et al. 2010], and nominal class-

based object-oriented systems are also a popular organizing principle in industrial programming

languages. Yet both nominality and static type-checking are often seen as too onerous, in particular

for the early stages of developing a program. Thus, the idea of allowing programmers to start

in an untyped, structural setting and later support transforming it into a typed, nominal setting

is not a new one, dating back to at least Anderson and Drossopoulou [2003]. The present paper

represents the most advanced version of this idea in terms of the supported language features and

overall semantic guarantees, building on years of work on gradual typing [Garcia et al. 2016; Siek

and Taha 2007; Siek et al. 2015a; Tobin-Hochstadt and Felleisen 2006], while also recognizing the

implementation challenges of (sound) gradual typing [Bauman et al. 2017; Greenman and Felleisen

2018; Kuhlenschmidt et al. 2019; Muehlboeck and Tate 2017; Richards et al. 2017; Roberts et al. 2019;

Takikawa et al. 2016]. We presented preliminary evidence that our design can be implemented

efficiently, and we showed that gradual-typing research techniques can be adapted to transition

not only types but even paradigms while still providing strong guarantees and good performance.

DATA AVAILABILITY STATEMENT
Our artifact provides the source code for MonNom, the source code of each configuration used to

evaluate each language, the data for each plot, and a virtual machine with everything compiled

and scripts set up to reproduce all measurements [Muehlboeck and Tate 2021].

ACKNOWLEDGMENTS
We thank the reviewers for their valuable suggestions towards improving the paper. We also thank

Mae Milano and Adrian Sampson, as well as the members of the Programming Languages Discus-

sion Group at Cornell University and of the Programming Research Laboratory at Northeastern

University, for their helpful feedback on preliminary findings of this work.

This material is based upon work supported in part by the National Science Foundation (NSF)

through grant CCF-1350182 and the Austrian Science Fund (FWF) through grant Z211-N23 (Wittgen-

stein Award). Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the NSF or the FWF.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:28 Fabian Muehlboeck and Ross Tate

REFERENCES
Bowen Alpern, Anthony Cocchi, Stephen Fink, and David Grove. 2001. Efficient Implementation of Java Interfaces:

Invokeinterface Considered Harmless. In OOPSLA. ACM, New York, NY, USA, 108–124. https://doi.org/10.1145/504282.

504291

Christopher Anderson and Sophia Drossopoulou. 2003. BabyJ: From Object Based to Class Based Programming via Types.

Electronic Notes in Theoretical Computer Science 82, 8 (2003), 53–81. https://doi.org/10.1016/S1571-0661(04)80802-8

WOOD.

Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. 2017. Sound Gradual Typing: Only

Mostly Dead. PACMPL 1, OOPSLA, Article 54 (2017), 24 pages. https://doi.org/10.1145/3133878

Gavin Bierman, Erik Meijer, and Mads Torgersen. 2010. Adding Dynamic Types to C#. In ECOOP. Springer Berlin Heidelberg,

Berlin, Heidelberg, 76–100. https://doi.org/10.1007/978-3-642-14107-2_5

John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2017. Migrating Gradual Types. PACMPL 2, POPL,

Article 15 (2017), 29 pages. https://doi.org/10.1145/3158103

Craig Chambers, David Ungar, and Elgin Lee. 1989. An Efficient Implementation of SELF, a Dynamically-Typed Object-

Oriented Language Based on Prototypes. In OOPSLA. Association for Computing Machinery, New York, NY, USA, 49–70.

https://doi.org/10.1145/74877.74884

Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-Amour. 2018. Collapsible Contracts:

Fixing a Pathology of Gradual Typing. PACMPL 2, OOPSLA, Article 133 (2018), 27 pages. https://doi.org/10.1145/3276503

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In POPL. ACM, New York, NY, USA,

429–442. https://doi.org/10.1145/2837614.2837670

Ben Greenman and Matthias Felleisen. 2018. A Spectrum of Type Soundness and Performance. PACMPL 2, ICFP, Article 71

(2018), 32 pages. https://doi.org/10.1145/3236766

Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund, and Cormac Flanagan. 2006. Sage: Hybrid Checking for

Flexible Specifications. Scheme and Functional Programming Workshop 6 (2006), 93–104. http://scheme2006.cs.uchicago.

edu/06-freund.pdf

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-Efficient Gradual Typing. Higher Order Symbol. Comput.
23, 2 (2010), 167–189. https://doi.org/10.1007/s10990-011-9066-z

Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G Siek. 2018. An Efficient Compiler for the Gradually Typed

Lambda Calculus. Scheme and Functional Programming Workshop 18 (2018), 19 pages. http://www.schemeworkshop.org/

2018/Kuhlenschmidt_Almahallawi_Siek.pdf

Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. 2019. Toward Efficient Gradual Typing for Structural

Types via Coercions. In PLDI. ACM, New York, NY, USA, 517–532. https://doi.org/10.1145/3314221.3314627

Barbara H. Liskov and Jeannette M. Wing. 1994. A Behavioral Notion of Subtyping. ACM Trans. Program. Lang. Syst. 16, 6
(Nov. 1994), 1811–1841. https://doi.org/10.1145/197320.197383

Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-Language Programs. In POPL. Association
for Computing Machinery, New York, NY, USA, 3–10. https://doi.org/10.1145/1190216.1190220

Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn. 2021. Corpse Reviver: Sound and Efficient

Gradual Typing via Contract Verification. PACMPL 5, POPL, Article 53 (2021), 28 pages. https://doi.org/10.1145/3434334

Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is Nominally Alive and Well. PACMPL 1, OOPSLA, Article

56 (2017), 30 pages. https://doi.org/10.1145/3133880

Fabian Muehlboeck and Ross Tate. 2021. Transitioning from Structural to Nominal Code with Efficient Gradual Typing:

Artifact. https://doi.org/10.5281/zenodo.5518181

Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual Type Theory. PACMPL 3, POPL, Article 15 (2019), 31 pages.

https://doi.org/10.1145/3290328

Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. The VM Already Knew That: Leveraging Compile-Time Knowledge

to Optimize Gradual Typing. PACMPL 1, OOPSLA, Article 55 (2017), 27 pages. https://doi.org/10.1145/3133879

Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2019. Transient Typechecks Are (Almost) Free. In ECOOP.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, Article 5, 28 pages. https://doi.org/10.4230/

LIPIcs.ECOOP.2019.5

Jeremy Siek and Walid Taha. 2007. Gradual Typing for Objects. In ECOOP. Springer Berlin Heidelberg, Berlin, Heidelberg,

2–27. https://doi.org/10.1007/978-3-540-73589-2_2

Jeremy G Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. Scheme and Functional Programming
Workshop 6 (2006), 81–92. http://scheme2006.cs.uchicago.edu/13-siek.pdf

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015a. Refined Criteria for Gradual Typing. In

SNAPL. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 274–293. https://doi.org/10.4230/LIPIcs.

SNAPL.2015.274

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

https://doi.org/10.1145/504282.504291
https://doi.org/10.1145/504282.504291
https://doi.org/10.1016/S1571-0661(04)80802-8
https://doi.org/10.1145/3133878
https://doi.org/10.1007/978-3-642-14107-2_5
https://doi.org/10.1145/3158103
https://doi.org/10.1145/74877.74884
https://doi.org/10.1145/3276503
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/3236766
http://scheme2006.cs.uchicago.edu/06-freund.pdf
http://scheme2006.cs.uchicago.edu/06-freund.pdf
https://doi.org/10.1007/s10990-011-9066-z
http://www.schemeworkshop.org/2018/Kuhlenschmidt_Almahallawi_Siek.pdf
http://www.schemeworkshop.org/2018/Kuhlenschmidt_Almahallawi_Siek.pdf
https://doi.org/10.1145/3314221.3314627
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1145/3434334
https://doi.org/10.1145/3133880
https://doi.org/10.5281/zenodo.5518181
https://doi.org/10.1145/3290328
https://doi.org/10.1145/3133879
https://doi.org/10.4230/LIPIcs.ECOOP.2019.5
https://doi.org/10.4230/LIPIcs.ECOOP.2019.5
https://doi.org/10.1007/978-3-540-73589-2_2
http://scheme2006.cs.uchicago.edu/13-siek.pdf
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:29

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Garcia. 2015b. Monotonic References

for Efficient Gradual Typing. In ESOP. Springer BerlinHeidelberg, Berlin, Heidelberg, 432–456. https://doi.org/10.1007/978-
3-662-46669-8_18

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual

Typing Dead?. In POPL. ACM, New York, NY, USA, 456–468. https://doi.org/10.1145/2837614.2837630

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: From Scripts to Programs. In OOPSLA. ACM,

New York, NY, USA, 964–974. https://doi.org/10.1145/1176617.1176755

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Findler, Matthew Flatt, Ben Greenman, AndrewM. Kent, Vincent St-Amour,

T. Stephen Strickland, and Asumu Takikawa. 2017. Migratory Typing: Ten Years Later. In SNAPL. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, Article 17, 17 pages. https://doi.org/10.4230/LIPIcs.SNAPL.2017.17

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and Evaluation of Gradual Typing for

Python. In DLS. ACM, New York, NY, USA, 45–56. https://doi.org/10.1145/2661088.2661101

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-World Soundness and

Collaborative Blame for Gradual Type Systems. In POPL. ACM, New York, NY, USA, 762–774. https://doi.org/10.1145/

3009837.3009849

Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan Vitek. 2010. Integrating Typed and

Untyped Code in a Scripting Language. In POPL. ACM, New York, NY, USA, 377–388. https://doi.org/10.1145/1706299.

1706343

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

https://doi.org/10.1007/978-3-662-46669-8_18
https://doi.org/10.1007/978-3-662-46669-8_18
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.1145/1706299.1706343
https://doi.org/10.1145/1706299.1706343

127:30 Fabian Muehlboeck and Ross Tate

A FULL FORMALIZATION
This appendix contains the full set of rules used in our formalization, in roughly the same sequence

as they are presented in the paper, together with a detailed explanation of all the parts.

Table 1. Index of Definitions

Signature Name Defined in

G
ra
m
m
ar

𝐶 Class Name Figure A.1

𝐼 Interface Name Figure A.1

𝑓 Field Name Figure A.1

𝑥 Variable Name Figure A.1

P Program Figure A.1

H (Inheritance) Hierarchy Figure A.1

S Signature Figure A.1

I Implementation Figure A.1

𝑁 Nominal Type Figure A.1

𝜏 Type Figure A.1

®𝜏 Type List Figure A.1

Γ Type Context Figure A.1

𝑚 Method Name Figure A.1

𝑠 Method Signature Figure A.1

𝑏 Method Body Figure A.1

𝑒 Expression Figure A.1

R
el
at
io
ns

⊢ 𝜏 ∼ 𝜏 Consistency Figure A.2

⊢ 𝜏 ⊑ 𝜏 Type Precision Figure A.2

H ⊢ 𝜏 ≤ 𝜏 Nominal Subtyping Figure A.3

H ⊢ 𝜏 ◀ 𝜏 Pessimistic Subtyping Figure A.4

H ⊢ 𝜏 ◁ 𝜏 Optimistic Subtyping Figure A.4

Ty
pi
ng

⊢ H Interface-Hierarchy Typing Figure A.5

H ⊢ S : H Signature Typing Figure A.5

H ⊢ 𝑠 extends 𝑠 Interface Method Inheritance Figure A.5

H ⊢ 𝑠 implements 𝑠 Class Method Inheritance Figure A.5

H | S ⊢ I : S Implementation Typing Figure A.5

⊢ Γ : ®𝜏 Type-Context Typing Figure A.5

⊢ 𝑏 : 𝑠 Method-Body Signature Figure A.5

⊢ P Program Checking Figure A.5

H ⊢ 𝑁 Nominal-Type Validity Figure A.6

H ⊢ 𝜏 Type Validity Figure A.6

H ⊢ ®𝜏 Type-List Validity Figure A.6

H ⊢ Γ Type-Context Validity Figure A.6

H ⊢ 𝑠 Method-Signature Validity Figure A.6

Γ ⊢ 𝑥 : 𝜏 Variable Lookup Figure A.7

S ⊢ 𝑁 .𝑚𝑠 Nominal Method Lookup Figure A.7

S ⊢ 𝜏 .𝑚𝑠 Method Lookup Figure A.7

S ⊢𝐶.𝑓 : 𝜏 Class Field Lookup Figure A.7

S ⊢ 𝜏 .𝑓 : 𝜏 Field Lookup Figure A.7

S ⊢𝐶 (®𝜏) Constructor Lookup Figure A.7

H | S | Γ ⊢ 𝑒 ↓ 𝜏 Expression Type-Checking Figure A.8

H | S | Γ ⊢ 𝑒 ↑ 𝜏 Expression Type-Synthesis Figure A.8

H | S | Γ ⊢ 𝑏 Method-Body Typing Figure A.8

Pr
ec
is
io
n

𝜒 Extensibility Figure A.10

⊢ H ⊑ H Inheritance-Hierarchy Precision Figure A.9

⊢ S ⊑ S Signature Precision Figure A.9

⊢ 𝑠 ⊑ 𝑠 Method-Signature Precision Figure A.9

⊢ ®𝜏 ⊑ ®𝜏 Type-List Precision Figure A.9

P ⊑ H ⊢ I ⊑ I Implementation Precision Figure A.9

⊢ P ⊑ P Program Precision Figure A.9

P ⊑ H ⊢ 𝑒 ⊑ 𝑒 Expression Precision Figure A.10

P ⊑ H ⊢ 𝑥 := {𝑓 := 𝑒 ; . . . | 𝑚𝑏; . . .} ⊑ 𝑒 : 𝜒 Record Precision Figure A.10

P ⊑ H ⊢ 𝑏 ⊑ 𝑏 Method-Body Precision Figure A.10

H ⊑ H ⊢ 𝜏 :> 𝜏 Subsumptive Supertyping Figure A.11

H ⊑ H ⊢ Γ :> Γ Type-Context Subsumptive Supertyping Figure A.11

Lo
w
er
ed

G
ra
m
m
ar

ˇP Lowered Program Figure A.12

ˇI Lowered Implementation Figure A.12

ˇ𝑏 Lowered Method Body Figure A.12

Γ̌ Lowered Type Context Figure A.12

𝑒 Lowered Expression Figure A.12

ℓ Location Figure A.12

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:31

Signature Name Defined in
𝑣 Value Figure A.12

𝛾 Guard Mode Figure A.12

𝛿 Dispatch Mode Figure A.12

𝐻 Heap Figure A.13

ℎ Heap Value Figure A.13

` Mark Figure A.13

] Imposition Figure A.13

Lo
w
er
ed

Ty
pi
ng

Σ Heap Type Figure A.15

𝜎 Heap-Value Type Figure A.15

H | S ⊢ ˇI : S Lowered-Implementation Typing Figure A.14

⊢ Γ̌ : ®𝜏 { Γ Type-Context Construction Figure A.14

⊢ ˇ𝑏 : 𝑠 Lowered-Method-Body Signature Figure A.14

⊢ ˇP Lowered-Program Typing Figure A.14

H | S ⊢ 𝐻 : Σ Heap Typing Figure A.15

H | S | Σ ⊢ ℎ : 𝜎 Heap-Value Typing Figure A.15

H ⊢ 𝑠 ◁ 𝑠 Optimistic Method-Signature Subtyping Figure A.15

H ⊢ ˇ𝑏 ◁ 𝑠 Optimistic Lowered-Method-Body Typing Figure A.15

H | S | Σ | Γ ⊢ 𝑒 : 𝜏 Lowered-Expression Typing Figure A.16

H | S | Σ | Γ ⊢ ˇ𝑏 : 𝑠 Lowered-Method-Body Typing Figure A.16

Lo
w
er
in
g

H | S | Γ ⊢ 𝑒 ↓ 𝜏 { 𝑒 Checked-Expression Lowering Figure A.17

H | S | Γ ⊢ 𝑒 { 𝑒 Synthesized-Expression Lowering Figure A.17

H | S | Γ ⊢ 𝑏 { ˇ𝑏 Method-Body Lowering Figure A.17

⊢ Γ { Γ̌ Type-Context Lowering Figure A.17

H | S ⊢ I { ˇI Implementation Lowering Figure A.17

⊢ P { ˇP Program Lowering Figure A.17

R
ed

uc
ti
on

an
d
Se
m
an

ti
cs

𝑟 Redex Figure A.20

𝐸 Evaluation Context Figure A.20

Y Potentially Erroneous Redex Figure A.21

𝑜 Observation Figure A.22

ˇP | 𝐻 ⊢ ℓ .𝑓 ↦→ 𝑣 Field Access Figure A.18

ˇP | 𝐻 → 𝐻 ⊢ ℓ .𝑓 := 𝑣 Field Access Figure A.18

ˇP | 𝐻 ⊢ 𝑣.𝑚 {𝛾 𝑏 Direct Method-Body Lookup Figure A.18

ˇP | 𝐻 → 𝐻 ⊢ 𝑣.𝑚 {𝛾 𝑏 Indirect Method-Body Lookup Figure A.18

H | 𝐻 ⊢ ℓ ↦→] Imposition Fetch Figure A.18

ˇP | 𝐻 → 𝐻 ⊢ 𝑣 : ®𝜏 Cast Reduction Figure A.19

ˇP | 𝐻 ⊢ 𝑣 : 𝜏 Cast Checking Figure A.19

H ⊢] ◀ 𝜏 Pessimistic Imposition Subtyping Figure A.19

S ⊢ (]) .𝑚 : ®𝜏 Imposed Method Return Types Figure A.19

ˇP ⊢ 𝐻 | 𝑒 𝐻−→ 𝐻 | 𝑒 Expression Reduction Figure A.20

ˇP ⊢ 𝐻 | 𝑟 𝐻−→ 𝐻 | 𝑒 Redex Reduction Figure A.20

ˇP ⊢ 𝐻 | 𝑒 → 𝐻 | 𝑒 Reduction Figure A.20

ˇP ⊢ 𝐻 | 𝑒 → error Error Reduction Figure A.21

⊢ P ↠ 𝑜 Observation Semantics Figure A.22

Lo
w
er
ed

Pr
ec
is
io
n

[Heap Correspondence Figure A.24

ˇP ⊑ H ⊢ ˇI ⊑ ˇI Lowered-Implementation Precision Figure A.23

⊢ ˇP ⊑ ˇP Lowered-Program Precision Figure A.23

ˇP ⊑ H ⊢ 𝐻 | 𝑒 ⊑ 𝐻 | 𝑒 Program-State Precision Figure A.24

ˇP ⊑ H | [⊢ 𝐻 ⊑ 𝐻 : [Heap Precision Figure A.24

ˇP ⊑ H | [⊢ ℓ ↦→ {𝑓 ↦→` 𝑒 ; . . . | 𝑚 ˇ𝑏; . . .}𝜒] ⊑ 𝐻 | ℓ ↦→ ℎ : [Heap-Record Precision Figure A.24

[⊢ 𝑣 ⊑ 𝑣 Value Precision Figure A.25

ˇP ⊑ H | [⊢ 𝑒 ⊑ 𝐻 | 𝑒 Lowered-Expression Precision Figure A.25

⊢ 𝑥 := {𝑓 := 𝑒 ; . . . | 𝑚 ˇ𝑏; . . .} { 𝐻 | 𝑒 : 𝜒 Record Lowering Figure A.25

ˇP ⊑ H | [⊢ ˇ𝑏 ⊑ 𝐻 | ˇ𝑏 Lowered-Method-Body Precision Figure A.25

ˇP ⊑ H ⊢ 𝛿 ⊑ 𝛿 Dispatch-Mode Precision Figure A.25

ˇP ⊑ H ⊢] ⊑] Imposition Precision Figure A.25

⊢ 𝛾 ⊑ 𝛾 Guard-Mode Precision Figure A.25

ˇP ⊢ 𝐻 | 𝑒 +−→ 𝐻 | 𝑒 Multi-Step Reduction Figure A.26

ˇP ⊑ ˇP ⊢ 𝐻 | 𝑒 ∗−→ • ⊑ 𝐻 | 𝑒 Always-Eventually Refines Figure A.26

ˇP ⊑ ˇP ⊢ 𝐻 | 𝑒 ∗−→ 𝐻 | 𝑒 ⊑ • Always-Eventually Relaxes Figure A.26

ˇP ⊢ 𝐻 | 𝑒 ∗−→ ∅ Always-Eventually Sticks Figure A.26

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:32 Fabian Muehlboeck and Ross Tate

Class Name 𝐶 Interface Name 𝐼 Field Name 𝑓 Variable Name 𝑥

Program P ::= ⟨H | S | I | 𝑒⟩ (Notation: P = ⟨HP | SP | IP | 𝑒P⟩)
Hierarchy H ::= ∅ | H ;𝑁 ≤ 𝐼 , . . . Nominal Type 𝑁 ::= 𝐶 | 𝐼
Signature S ::= ∅ | S;𝑁 {𝑚𝑠; . . .} | S;𝐶 (®𝜏){𝑓 : 𝜏 ; . . .}
Implementation I ::= ∅ | I;𝑥 : 𝐶 (Γ){𝑓 := 𝑒; . . . | 𝑚𝑏; . . .}
Type 𝜏 ::= 𝑁 | B | dyn Method Name 𝑚 ::= 𝑓 | _
Type List ®𝜏 ::= ∅ | ®𝜏, 𝜏 Method Signature 𝑠 ::= (®𝜏) : 𝜏

Type Context Γ ::= ∅ | Γ, 𝑥 : 𝜏 Method Body 𝑏 ::= (Γ) ↦→ 𝑒 : 𝜏

Expression 𝑒 ::= 𝑥 | let ⟨Γ⟩ := ⟨𝑒, . . .⟩ in 𝑒 | false | true | 𝑒 == 𝑒
| 𝑒.𝑓 | 𝑒.𝑓 := 𝑒 | 𝑒 (𝑒, . . .)
| new 𝐶 (𝑒, . . .) | new _⟨𝑏⟩ | new 𝑥 := {𝑓 := 𝑒; . . . | 𝑚𝑏; . . .}

Fig. A.1. Grammar (repeat of Figure 2)

A.1 Grammar
AMonNom program specifies a nominal hierarchy of classes and interfaces. Although the implemen-

tation supports a syntax wherein each class/interface is specified in its entirety in its own file, the

calculus formalizes MonNom by splitting the nominal hierarchy into three parts: the (inheritance)

hierarchy H , the siganture S, and the implementation I. This breaks up the recursion inherent in

the surface syntax, making many of our theorems easier. For example, although expression typing

depends on the nominal hierarchy, it only depends on the inheritance hierarchy and the signatures;

separating the implementation out makes it easier, then, to prove the static and dynamic gradual

guarantees.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:33

⊢ 𝜏 ∼ 𝜏 ⊢ 𝜏 ⊑ 𝜏
⊢ 𝜏 ∼ 𝜏 ⊢ 𝜏 ∼ dyn ⊢ dyn ∼ 𝜏 ⊢ 𝜏 ⊑ 𝜏 ⊢ 𝜏 ⊑ dyn

Fig. A.2. Consistency (∼) and Precision (⊑) (repeat of Figure 4)

H ⊢ 𝜏 ≤ 𝜏

H ⊢ 𝜏 ≤ 𝜏

𝑁 ≤ 𝐼1, . . . ∈ H H ⊢ 𝐼𝑖 ≤ 𝜏

H ⊢ 𝑁 ≤ 𝜏

Fig. A.3. Nominal Subtyping (repeat of Figure 3)

H ⊢ 𝜏 ◁ 𝜏 H ⊢ 𝜏 ◀ 𝜏H ⊢ 𝜏 ≤ 𝜏 ′ ⊢ 𝜏 ′ ∼ 𝜏 ′′

H ⊢ 𝜏 ◁ 𝜏 ′′
H ⊢ 𝜏 ≤ 𝜏 ′ ⊢ 𝜏 ′ ⊑ 𝜏 ′′

H ⊢ 𝜏 ◀ 𝜏 ′′

Fig. A.4. Optimistic (◁) and Pessimistic (◀) Subtyping (repeat of Figure 5)

A.2 Typing
A.2.1 Consistency, Precision, and Subtyping. The combination of gradual typing and nominal

subtyping in one language means that there are many interesting relationships between types.

That is, one can adjust whether inheritance is used and how dynamism is introduced or eliminated,

and each of these combinations has some interesting utility.

If we ignore inheritance and just focus on dynamism, then we get the consistency (∼) and
precision (⊑) relations. The consistency relation holds when there is some way to instantiate

occurrences of dyn in both types in order to make the two types identical. The precision relation

holds when there is some way to instantiate occurrences of dyn in only the right-hand type in

order to make the two types identical. That is, 𝜏 ⊑ 𝜏 ′ holds when 𝜏 ′ is “more dynamic” than 𝜏 .

If we instead ignore dynamism and focus on inheritance, then we get the nominal subtyping

relation (≤). The nominal subtyping relation holds when either the two types are the same or the

class or interface type on the left can be repeatedly replaced with some inherited interface type to

arrive at exactly the type on the right.

Lastly, we can combine both dynamism and inheritance. Pessimistic subtyping (◀) has the
property that any value satisfying the contract of the left-hand type is guaranteed to satisfy the

contract of the right-hand type. Optimistic subtyping (◁) conceptually (although—with generics—

not precisely) holds whenever there is some way to instantiate occurrences of dyn in both types in

order to make the left inherit the right.

A.2.2 Typing the Nominal Hierarchy. The typing rules for the nominal hierarchy (and programs) are

shown in Figure A.5. They make use of judgements for validity and lookup provided in Figure A.6

and Figure A.7, respectively.

An inheritance hierarchy is well-formed if inheritance is well-founded and every class or interface

is declared it most once.

A signature is well-formed if

• all types in it are valid according to the inheritance hierarchy,

• the method signatures are provided for every interface and class in the inheritance hierarchy,

• the constructor type and the field types are provided for every class in the inheritance

hierarchy,

• there are no overlapping field/method names within any interface or class, and

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:34 Fabian Muehlboeck and Ross Tate

⊢ H
⊢ ∅

⊢ H ¬ H ⊢ 𝑁 ∀𝑖 . H ⊢ 𝐼𝑖
⊢ H ;𝑁 ≤ 𝐼1, . . .

H ⊢ S : H H0 ⊢ ∅ : ∅
H0 ⊢ S : H ∀𝑖, 𝑖 ′. 𝑚𝑖 =𝑚𝑖′ =⇒ 𝑖 = 𝑖 ′ ∀𝑖 . H0 ⊢ 𝑠𝑖

∀𝑖, 𝑖 ′, 𝑠 . S ⊢ 𝐼𝑖 .𝑚𝑖′𝑠 =⇒ H0 ⊢ 𝑠𝑖′ extends 𝑠 ∀𝑖,𝑚, 𝑠. S ⊢ 𝐼𝑖 .𝑚𝑠 =⇒ ∃𝑖 ′. 𝑚𝑖′ =𝑚

H0 ⊢ S; 𝐼 {𝑚1𝑠1; . . .} : H ; 𝐼 ≤ 𝐼1, . . .

H0 ⊢ S : H ∀𝑖, 𝑖 ′. 𝑚𝑖 =𝑚𝑖′ =⇒ 𝑖 = 𝑖 ′ ∀𝑖 . H0 ⊢ 𝑠𝑖
∀𝑖, 𝑖 ′, 𝑠 . S ⊢ 𝐼𝑖 .𝑚𝑖′𝑠 =⇒ H0 ⊢ 𝑠𝑖′ implements 𝑠 ∀𝑖,𝑚, 𝑠. S ⊢ 𝐼𝑖 .𝑚𝑠 =⇒ ∃𝑖 ′. 𝑚𝑖′ =𝑚

�𝑖, 𝑖 ′. 𝑚𝑖 = 𝑓𝑖′ H0 ⊢ ®𝜏 ∀𝑖, 𝑖 ′. 𝑓𝑖 = 𝑓𝑖′ =⇒ 𝑖 = 𝑖 ′ ∀𝑖 . H0 ⊢ 𝜏𝑖
H0 ⊢ S;𝐶{𝑚1𝑠1; . . .};𝐶 (®𝜏){𝑓1 : 𝜏1; . . .} : H ;𝐶 ≤ 𝐼1, . . .

H ⊢ 𝑠 extends 𝑠 H ⊢ 𝑠 implements 𝑠
∀𝑖 . H ⊢ 𝜏 ′𝑖 ≤ 𝜏𝑖 H ⊢ 𝜏 ≤ 𝜏 ′

H ⊢ (𝜏1, . . .) : 𝜏 extends (𝜏 ′
1
, . . .) : 𝜏 ′

∀𝑖 . H ⊢ 𝜏 ′𝑖 ◀ 𝜏𝑖 H ⊢ 𝜏 ≤ 𝜏 ′

H ⊢ (𝜏1, . . .) : 𝜏 implements (𝜏 ′
1
, . . .) : 𝜏 ′

H | S ⊢ I : S
H0 | S0 ⊢ ∅ : ∅

H0 | S0 ⊢ I : S
H0 | S0 ⊢ I : S; 𝐼 {. . .}

H0 | S0 ⊢ I : S
⊢ Γ : ®𝜏 ∀𝑖 . H0 | S0 | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖 ∀𝑖 . ⊢ 𝑏𝑖 : 𝑠𝑖 ∀𝑖 . H0 | S0 | Γ, 𝑥 : 𝐶 ⊢ 𝑏𝑖
H0 | S0 ⊢ I;𝑥 : 𝐶 (Γ){𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} : S;𝐶{𝑚1𝑠1; . . .};𝐶 (®𝜏){𝑓1 : 𝜏1; . . .}

⊢ Γ : ®𝜏 ⊢ 𝑏 : 𝑠

⊢ ∅ : ∅
⊢ Γ : ®𝜏

⊢ Γ, 𝑥 : 𝜏 : ®𝜏, 𝜏
⊢ Γ : ®𝜏

⊢ (Γ) ↦→ 𝑒 : 𝜏 : (®𝜏) : 𝜏

⊢ P ⊢ H H ⊢ S : H H | S ⊢ I : S H | S | ∅ ⊢ 𝑒 ↓ B
⊢ ⟨H | S | I | 𝑒⟩

Fig. A.5. Program Typing (extension of Figure 7)

H ⊢ 𝑁 H ⊢ 𝜏

H ;𝑁 ≤ . . . ⊢ 𝑁
H ⊢ 𝑁

H ;𝑁 ′ ≤ . . . ⊢ 𝑁 H ⊢ B H ⊢ dyn
H ⊢ ®𝜏 H ⊢ Γ H ⊢ 𝑠

H ⊢ ∅
H ⊢ ®𝜏 H ⊢ 𝜏

H ⊢ ®𝜏, 𝜏 H ⊢ ∅
H ⊢ Γ �𝜏 ′. Γ ⊢ 𝑥 : 𝜏 ′ H ⊢ 𝜏

H ⊢ Γ, 𝑥 : 𝜏

H ⊢ ®𝜏 H ⊢ 𝜏
H ⊢ (®𝜏) : 𝜏

Fig. A.6. Type Validation

• every interface and class provides at least the methods that any inherited interface provides,

and the corresponding signature of each such method either extends or implements that of

the inherited method signatures.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:35

Γ ⊢ 𝑥 : 𝜏

Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏

Γ ⊢ 𝑥 : 𝜏

Γ, 𝑥 ′
: 𝜏 ′ ⊢ 𝑥 : 𝜏

S ⊢ 𝑁 .𝑚𝑠 S ⊢ 𝜏 .𝑚𝑠

S;𝑁 {𝑚1𝑠1; . . .} ⊢ 𝑁 .𝑚𝑖𝑠𝑖

S ⊢ 𝑁 .𝑚𝑠

S;𝑁 ′{. . .} ⊢ 𝑁 .𝑚𝑠

S ⊢ 𝑁 .𝑚𝑠

S;𝐶 (. . .){. . .} ⊢ 𝑁 .𝑚𝑠 S ⊢ dyn.𝑚(dyn, . . .) : dyn

S ⊢ 𝐶.𝑓 : 𝜏 S ⊢ 𝜏 .𝑓 : 𝜏

S;𝐶 (. . .){𝑓1 : 𝜏1; . . .} ⊢ 𝐶.𝑓𝑖 : 𝜏𝑖

S ⊢ 𝐶.𝑓 : 𝜏

S;𝑁 {. . .} ⊢ 𝐶.𝑓 : 𝜏

S ⊢ 𝐶.𝑓 : 𝜏

S;𝐶 ′(. . .){. . .} ⊢ 𝐶.𝑓 : 𝜏 S ⊢ dyn.𝑓 : dyn

S ⊢ 𝐶 (®𝜏)

S;𝐶 (®𝜏){. . .} ⊢ 𝐶 (®𝜏)
S ⊢ 𝐶 (®𝜏)

S;𝑁 {. . .} ⊢ 𝐶 (®𝜏)
S ⊢ 𝐶 (®𝜏)

S;𝐶 ′(. . .){. . .} ⊢ 𝐶 (®𝜏)

Fig. A.7. Type Lookup

An implementation is well-formed if field initializers and method bodies are provided for every

class, with types and signatures in correspondence with the class signature.

We expect most of the above to be straightforward with one exception: method inheritance.

Method Inheritance. When inheriting amethod from a superinterface, the signature of thatmethod

provided by the sub-class/interface must be compatible with that provided by the superinterface.

One nuanced contribution of this work is determining what the compatibility should be, so here

we explain why extends and interface are defined as they are.

The easier case to explain is compatibility of return types. For one, for safety it is important that

any value returned by the sub-class/interface be valid value to return for the superinterface. This

requires the sub-return-type to be at least a pessimistic supertype of the super-return-type. But

we also want MonNom to satisfy static subsumption (and be easy to type-check). As such, using

the sub-class/interface to determine the method’s signature should return a type that type-checks

in at least all the contexts where using the superinterface to determine the method’s signature

would type-check. Pessimistic subtyping does not guarantee that:𝐶 is a pessimistic subtype of dyn
but type-checks in far fewer contexts than dyn (per the static gradual guarantee). In MonNom,

nominal subtyping is the strongest relation that satisfies the safety and the subsumption properties.

Furthermore, it has the added benefit that there is no need change representations (e.g. boxed versus

unboxed) between nominal supertypes, making for a simpler and more efficient implementation.

For method parameter types, we still have the safety requirement, but no longer the subsumption

requirement. This is why implements requires only pessimistic supertyping (note the contravari-

ance). That also enables classes to have all dyn parameters so that MonNom supports classes with

untyped implementations of typed methods (although the return type still has to be a nominal

subtype of the interface return types, the method implementation only needs to check against it

optimistically). But implements is only used when classes inherit methods.

When interfaces inherit methods, they must use the more restrictive extends judgement. The

reason is that one can cast structural objects to interfaces, and when doing so the method bodies

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:36 Fabian Muehlboeck and Ross Tate

are checked to optimistically satisfy the method signatures. (Technically this is only done for

the _-method, but we felt that it would be better if requirements for method inheritance were

consistent across all method names.) For reasons we will illustrate shortly, in order to ensure

dynamic subsumption it is important that if a cast to a subinterface succeeds then so must a cast

to any superinterface, and as such if a method implementation provided by a structural object

optimistically satisfies a subinterface’s method signature then it must also optimistically satisfy the

superinterface’s method signature (if there is any). Once again, pessimistic supertyping does not

guarantee this: the method body might require a particular class as an input, and requiring just

dyn as input in the subinterface’s signature would be optimistically compatible, whereas requiring

a class as input in the superinterface’s signature would not be optimistically compatible if the two

classes were unrelated, despite dyn being a pessimistic supertype of any class. And, once again,

nominal supertyping does satisfy both this and the safety property (as does nominal subtyping for

return types). This is why interfaces must use extends rather than implements in order to satisfy

dynamic subsumption. (Note that statically typed object-oriented languages generally already

require nominal supertyping/subtyping in method inheritance, so although this is more restrictive

than one might expect for gradual typing, it is no more restrictive than languages without gradual

typing.)

Now, in the above, we stated that dynamic subsumption requires that if a cast to a subinterface

succeeds then the cast of the same value to any superinterface must succeed as well. To see why,

consider the case where that a method’s receiver’s type might require some interface as input to

the method. By contravariance of method inheritance, some subtype of that method’s receiver’s

type might require only some superinterface as input, which would cause lowering to insert a

different cast. Dynamic subsumption requires that if the former method invocation succeeds then

so must the latter, and as such a successful cast to the (sub-)interface in the former must imply a

successful cast to the superinterface in the latter. This illustrates the subtle interactions between

subtyping and gradual typing that we have managed to address in MonNom.

A.2.3 Typing Expressions. Figure A.8 shows the typing rules for expressions. The key detail to note
is where type-checking versus type-synthesis is used. In particular, it is critical that field access,

field assignment, and method invocation use type-synthesis rather than type-checking for the

receiver’s type. If they used type-checking, the receiver’s type could always be simply dyn, in which
case all field accesses, field assignments, and method invocations would type-check (supposing

their constituents were at least valid regardless of context). That said, adding subtyping rules with

respect to nominal subtyping to both of these judgements would be a conservative extension to

type-checking due to the considerations in Section A.2.2, which contributes to MonNom’s static

subsumption property.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:37

H | S | Γ ⊢ 𝑒 ↓ 𝜏
H | S | Γ ⊢ 𝑒 ↑ 𝜏 ′ H ⊢ 𝜏 ′ ◁ 𝜏

H | S | Γ ⊢ 𝑒 ↓ 𝜏
H | S | Γ ⊢ 𝑒 ↑ 𝜏

Γ ⊢ 𝑥 : 𝜏

H | S | Γ ⊢ 𝑥 ↑ 𝜏
∀𝑖 . H ⊢ 𝜏𝑖 ∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖 H | S | Γ, 𝑥1 : 𝜏1, . . . ⊢ 𝑒 ↑ 𝜏

H | S | Γ ⊢ let ⟨𝑥1 : 𝜏1, . . .⟩ := ⟨𝑒1, . . .⟩ in 𝑒 ↑ 𝜏

H | S | Γ ⊢ false ↑ B H | S | Γ ⊢ true ↑ B

H | S | Γ ⊢ 𝑒1 ↑ 𝜏1

H | S | Γ ⊢ 𝑒2 ↑ 𝜏2

H | S | Γ ⊢ 𝑒1 == 𝑒2 ↑ B

H | S | Γ ⊢ 𝑒 ↑ 𝜏
S ⊢ 𝜏 .𝑓 : 𝜏𝑓

H | S | Γ ⊢ 𝑒.𝑓 ↑ 𝜏𝑓

H | S | Γ ⊢ 𝑒 ↑ 𝜏
S ⊢ 𝜏 .𝑓 : 𝜏𝑓

H | S | Γ ⊢ 𝑒𝑓 ↓ 𝜏𝑓
H | S | Γ ⊢ 𝑒.𝑓 := 𝑒𝑓 ↑ 𝜏

H | S | Γ ⊢ 𝑒 ↑ 𝜏
S ⊢ 𝜏 ._(𝜏1, . . .) : 𝜏_

∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖
H | S | Γ ⊢ 𝑒 (𝑒1, . . .) ↑ 𝜏_

H | S | Γ ⊢ 𝑒 ↑ 𝜏
S ⊢ 𝜏 .𝑓 (𝜏1, . . .) : 𝜏𝑓

∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖
H | S | Γ ⊢ 𝑒.𝑓 (𝑒1, . . .) ↑ 𝜏𝑓

S ⊢ 𝐶 (𝜏1, . . .) ∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖
H | S | Γ ⊢ new 𝐶 (𝑒1, . . .) ↑ 𝐶

H | S | Γ ⊢ 𝑏
H | S | Γ ⊢ new _⟨𝑏⟩ ↑ dyn

∀𝑖, 𝑖 ′. 𝑓𝑖 = 𝑓𝑖′ =⇒ 𝑖 = 𝑖 ′ ∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↑ 𝜏𝑖
�𝑖, 𝑖 ′. 𝑓𝑖 =𝑚𝑖′ ∀𝑖, 𝑖 ′. 𝑚𝑖 =𝑚𝑖′ =⇒ 𝑖 = 𝑖 ′ ∀𝑖 . H | S | Γ, 𝑥 : dyn ⊢ 𝑏𝑖

H | S | Γ ⊢ new 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ↑ dyn

H | S | Γ ⊢ 𝑏
H ⊢ Γ𝑏 H ⊢ 𝜏𝑏 H | S | Γ, Γ𝑏 ⊢ 𝑒𝑏 ↓ 𝜏𝑏

H | S | Γ ⊢ (Γ𝑏) ↦→ 𝑒𝑏 : 𝜏𝑏

Fig. A.8. Expression Typing (extension of Figure 6)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:38 Fabian Muehlboeck and Ross Tate

⊢ H ⊑ H

⊢ ∅ ⊑ ∅
⊢ H ⊑ H ′

⊢ H ;𝑁 ≤ 𝐼1, . . . ⊑ H ′

⊢ H ⊑ H ′ ∀𝑖 ′.∃𝑖 . 𝐼𝑖 = 𝐼 ′𝑖′
∀𝑖, 𝐼 ′. H ⊢ 𝐼𝑖 ≤ 𝐼 ′ ∧ H ′ ⊢ 𝐼 ′ =⇒ ∃𝑖 ′. H ′ ⊢ 𝐼 ′𝑖′ ≤ 𝐼 ′

⊢ H ;𝑁 ≤ 𝐼1, . . . ⊑ H ′
;𝑁 ≤ 𝐼 ′

1
, . . .

⊢ S ⊑ S

⊢ ∅ ⊑ ∅
⊢ S ⊑ S′

⊢ S;𝑁 {. . .} ⊑ S′
⊢ S ⊑ S′

⊢ S;𝐶 (. . .){. . .} ⊑ S′

⊢ S ⊑ S′ ∀𝑖 . ⊢ 𝑠𝑖 ⊑ 𝑠 ′𝑖

⊢ S;𝑁 {𝑚1𝑠1; . . .} ⊑ S′
;𝑁 {𝑚1𝑠

′
1
; . . .}

⊢ S ⊑ S′ ⊢ ®𝜏 ⊑ ®𝜏 ′ ∀𝑖 . ⊢ 𝜏𝑖 ⊑ 𝜏 ′𝑖

⊢ S;𝐶 (®𝜏){𝑓1 : 𝜏1; . . .} ⊑ S′
;𝐶 (®𝜏 ′){𝑓1 : 𝜏 ′

1
; . . .}

⊢ 𝑠 ⊑ 𝑠

⊢ ®𝜏 ⊑ ®𝜏 ′ ⊢ 𝜏 ⊑ 𝜏 ′

⊢ (®𝜏) : 𝜏 ⊑ (®𝜏 ′) : 𝜏 ′

⊢ ®𝜏 ⊑ ®𝜏

⊢ ∅ ⊑ ∅
⊢ ®𝜏 ⊑ ®𝜏 ′ ⊢ 𝜏 ⊑ 𝜏 ′

⊢ ®𝜏, 𝜏 ⊑ ®𝜏 ′, 𝜏 ′

P ⊑ H ⊢ I ⊑ I

P ⊑ H ′ ⊢ ∅ ⊑ ∅
¬ H ′ ⊢ 𝐶 P ⊑ H ′ ⊢ I ⊑ I ′

P ⊑ H ′ ⊢ I;𝑥 : 𝐶 (. . .){. . . | . . .} ⊑ I ′

∀𝑖 . H ′ ⊢ 𝜏 ′𝑖 P ⊑ H ′ ⊢ I ⊑ I ′

∀𝑖 . ⊢ 𝜏𝑖 ⊑ 𝜏 ′𝑖 ∀𝑖 . P ⊑ H ′ ⊢ 𝑒𝑖 ⊑ 𝑒 ′𝑖 ∀𝑖 . P ⊑ H ′ ⊢ 𝑏𝑖 [𝑥 ↦→ 𝑥 ′, 𝑥1 ↦→ 𝑥 ′
1
, . . .] ⊑ 𝑏 ′𝑖

P ⊑ H ′ ⊢ I;𝑥 : 𝐶 (𝑥1 : 𝜏1, . . .){𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ⊑ I ′
;𝑥 ′

: 𝐶 (𝑥 ′
1

: 𝜏 ′
1
, . . .){𝑓1 := 𝑒 ′

1
; . . . | 𝑚1𝑏

′
1
; . . .}

⊢ P ⊑ P
⊢ HP ⊑ HP′ ⊢ SP ⊑ SP′ P ⊑ HP′ ⊢ IP ⊑ IP′ P ⊑ HP′ ⊢ 𝑒P ⊑ 𝑒P′

⊢ P ⊑ P ′

Fig. A.9. Program Precision (extension of Figure 8)

A.3 Precision
A.3.1 Program Precision. Now we get to the core contribution of our formalization: the precision

relations. We start with program precision, shown in Figure A.9. The only interesting aspects of

these rules were already discussed in Section 4.1.

A.3.2 Expression Precision. The rules for expression precision are shown in Figure A.10. Again, the

only interesting rules were already discussed in Section 4.2. Note that here we should an additional

rule for record precision, where the last rule permits reordering of methods. One implication of

the record-precision rules is that they can change the order in which expressions are evaluated:

field initializers can be changed to execute after the record is created, and emulating methods with

lambda-valued fields can create lambda closures that would not exist in the original program. In

all cases, the reordered and new expressions can easily be determined to not affect the execution

of the program because they necessarily occur in isolation. For example, whether the record field

is initialized before or after the record is created is unobservable because the record location is

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:39

Extensibility 𝜒 ::= fix | ext

P ⊑ H ⊢ 𝑒 ⊑ 𝑒 P ⊑ H ′ ⊢ 𝑥 ⊑ 𝑥

∀𝑖 . H ′ ⊢ 𝜏 ′𝑖 ∀𝑖 . ⊢ 𝜏𝑖 ⊑ 𝜏 ′𝑖 ∀𝑖 . P ⊑ H ′ ⊢ 𝑒𝑖 ⊑ 𝑒 ′𝑖 P ⊑ H ′ ⊢ 𝑒 [𝑥1 ↦→ 𝑥 ′
1
, . . .] ⊑ 𝑒 ′

P ⊑ H ′ ⊢ let ⟨𝑥1 : 𝜏1, . . .⟩ := ⟨𝑒1, . . .⟩ in 𝑒 ⊑ let ⟨𝑥 ′
1

: 𝜏 ′
1
, . . .⟩ := ⟨𝑒 ′

1
, . . .⟩ in 𝑒 ′

P ⊑ H ′ ⊢ false ⊑ false P ⊑ H ′ ⊢ true ⊑ true

P ⊑ H ′ ⊢ 𝑒1 ⊑ 𝑒 ′
1

P ⊑ H ′ ⊢ 𝑒2 ⊑ 𝑒 ′
2

P ⊑ H ′ ⊢ 𝑒1 == 𝑒2 ⊑ 𝑒 ′
1
== 𝑒 ′

2

P ⊑ H ′ ⊢ 𝑒 ⊑ 𝑒 ′

P ⊑ H ′ ⊢ 𝑒.𝑓 ⊑ 𝑒 ′.𝑓

P ⊑ H ′ ⊢ 𝑒 ⊑ 𝑒 ′

P ⊑ H ′ ⊢ 𝑒𝑓 ⊑ 𝑒 ′
𝑓

P ⊑ H ′ ⊢ 𝑒.𝑓 := 𝑒𝑓 ⊑ 𝑒 ′.𝑓 := 𝑒 ′
𝑓

P ⊑ H ′ ⊢ 𝑒 ⊑ 𝑒 ′ ∀𝑖 . P ⊑ H ′ ⊢ 𝑒𝑖 ⊑ 𝑒 ′𝑖

P ⊑ H ′ ⊢ 𝑒 (𝑒1, . . .) ⊑ 𝑒 ′(𝑒 ′
1
, . . .)

∀𝑖 . P ⊑ H ′ ⊢ 𝑒𝑖 ⊑ 𝑒 ′𝑖

P ⊑ H ′ ⊢ new 𝐶 (𝑒1, . . .) ⊑ new 𝐶 (𝑒 ′
1
, . . .)

𝑥 is not free in 𝑏 P ⊑ H ′ ⊢ 𝑥 := {| _𝑏} ⊑ 𝑒 ′ : 𝜒 ′

P ⊑ H ′ ⊢ new _⟨𝑏⟩ ⊑ 𝑒 ′

P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ⊑ 𝑒 ′ : ext

P ⊑ H ′ ⊢ new 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ⊑ 𝑒 ′

¬ H ′ ⊢ 𝐶 ∀𝑖 . H ′ ⊢ 𝜏 ′𝑖 𝑥 : 𝐶 (𝑥1 : 𝜏1, . . .){𝑓1 := 𝑒𝑓 ;1; . . . | 𝑚1𝑏1; . . .} ∈ IP ∀𝑖 . ⊢ 𝜏𝑖 ⊑ 𝜏 ′𝑖
∀𝑖 . P ⊑ H ′ ⊢ 𝑒𝑖 ⊑ 𝑒 ′𝑖 P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒𝑓 ;1; . . . | 𝑚1𝑏1 [𝑥1 ↦→ 𝑥 ′

1
, . . .]; . . .} ⊑ 𝑒 ′ : 𝜒 ′

P ⊑ H ′ ⊢ new 𝐶 (𝑒1, . . .) ⊑ let ⟨𝑥 ′
1

: 𝜏 ′
1
, . . .⟩ := ⟨𝑒 ′

1
, . . .⟩ in 𝑒 ′

H ′ ⊢ 𝜏 ′ ⊢ 𝜏 ⊑ 𝜏 ′ HP ⊢ 𝜏 ≤ 𝜏𝑥 P ⊑ H ′ ⊢ 𝑒𝑥 ⊑ 𝑒 ′𝑥 P ⊑ H ′ ⊢ 𝑒 [𝑥 ↦→ 𝑥 ′] ⊑ 𝑒 ′

P ⊑ H ′ ⊢ let ⟨𝑥𝑥 : 𝜏⟩ := ⟨𝑒𝑥 ⟩ in let ⟨𝑥 : 𝜏𝑥 ⟩ := ⟨𝑥𝑥 ⟩ in 𝑒 ⊑ let ⟨𝑥 ′
: 𝜏 ′⟩ := ⟨𝑒 ′𝑥 ⟩ in 𝑒 ′

P ⊑ H ⊢ 𝑥 := {𝑓 := 𝑒; . . . | 𝑚𝑏; . . .} ⊑ 𝑒 : 𝜒

𝑥 is not free in 𝑏 P ⊑ H ′ ⊢ 𝑏 ⊑ 𝑏 ′

P ⊑ H ′ ⊢ 𝑥 := {| _𝑏} ⊑ new _⟨𝑏 ′⟩ : fix

∀𝑖 . P ⊑ H ′ ⊢ 𝑒𝑖 [𝑥 ↦→ 𝑥 ′] ⊑ 𝑒 ′𝑖 ∀𝑖 . P ⊑ H ′ ⊢ 𝑏𝑖 [𝑥 ↦→ 𝑥 ′] ⊑ 𝑏 ′𝑖

P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ⊑ new 𝑥 ′
:= {𝑓1 := 𝑒 ′

1
; . . . | 𝑚1𝑏

′
1
; . . .} : ext

P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} ⊑ 𝑒 ′ : ext P ⊑ H ′ ⊢ 𝑒𝑓 ⊑ 𝑒 ′
𝑓

P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . ; 𝑓 := 𝑒𝑓 | 𝑚1𝑏1; . . .} ⊑ 𝑒 ′.𝑓 := 𝑒 ′
𝑓

: ext

𝑥 is not free in 𝑏 P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . ; 𝑓 := new _⟨𝑏⟩ | 𝑚1𝑏1; . . .} ⊑ 𝑒 ′ : 𝜒 ′

P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . . ; 𝑓 𝑏} ⊑ 𝑒 ′ : 𝜒 ′

P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . . ;𝑚′𝑏 ′;𝑚𝑏;𝑚′
1
𝑏 ′

1
; . . .} ⊑ 𝑒 ′ : 𝜒 ′

P ⊑ H ′ ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . . ;𝑚𝑏;𝑚′𝑏 ′;𝑚′
1
𝑏 ′

1
; . . .} ⊑ 𝑒 ′ : 𝜒 ′

P ⊑ H ⊢ 𝑏 ⊑ 𝑏

∀𝑖 . H ′ ⊢ 𝜏 ′𝑖 H ′ ⊢ 𝜏 ′ ∀𝑖 . ⊢ 𝜏𝑖 ⊑ 𝜏 ′𝑖 P ⊑ H ′ ⊢ 𝑒 [𝑥1 ↦→ 𝑥 ′
1
, . . .] ⊑ 𝑒 ′ ⊢ 𝜏 ⊑ 𝜏 ′

P ⊑ H ′ ⊢ (𝑥1 : 𝜏1, . . .) ↦→ 𝑒 : 𝜏 ⊑ (𝑥 ′
1

: 𝜏 ′
1
, . . .) ↦→ 𝑒 ′ : 𝜏 ′

Fig. A.10. Expression Precision (extension of Figure 9)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:40 Fabian Muehlboeck and Ross Tate

not accessible to the initializer. So the impact of this is more on how the semantics need to be

formalized in order to easily prove the necessary commutation properties.

Instance-Private Fields. One important nuance of our calculus is that its classes effectively have

instance-private fields, meaning fields whose values are (directly) accessible only to the instance

they are a part of. Our calculus achieves this by permitting the arguments to the constructor to

be directly accessed by the class’s method bodies. Without assigning these arguments to (named)

fields or returning them from methods, there is no way for even other instances of the same class

to access them even in untyped code.
That final note about untyped code is important. By not assigning (public) names to these fields,

we prevent even our gradual type system from circumventing their privacy. This is not by accident;

rather, it is critical to transitioning from structural to nominal code in a way that satisfies the

gradual guarantee.

Note that the method bodies in lambda and record expressions can access the local variables

in their context. When these expressions are executed, the values of those variables implicitly

become part of the structural object allocated in the heap. In order to transition these structural

lambda and record expressions into nominal class constructions, we need some way to make those

values explicit. If we were to simply designate them as named fields, those named fields would

be accessible in the more-precise typed code, and per the gradual guarantee would need to be

accessible with the same names in the untyped code, where they were unnamed before. So instead

we make them the parameters of the class constructor, where they are accessible from the method

bodies but are otherwise unnamed. Thus strong encapsulation might have a critical role in gradual

typing.

A.3.3 The Static Gradual Guarantee. Now that the relevant judgements have been formalized in

full, here we repeat the formal statement of our guarantee about transitioning between structural

and nominal code with a property known as the static gradual guarantee, this time with proof.

Theorem 4.1 (Static Gradual Guarantee). For all programs satisfying ⊢ P ⊑ P ′, if ⊢ P, ⊢ HP′ ,
and HP′ ⊢ SP′ : HP′ hold, then so does ⊢ P ′.

Proof. This is a corollary of Lemma A.1, below, basically stating the same guarantee for specif-

ically expressions. Because the precision relation is defined in terms of the more-precise imple-

mentation but not the less-precise implementation, one can simply apply Lemma A.1 to prove that

well-typedness of the more-precise implementation implies well-typedness of the corresponding

expressions (and method bodies) in the less-precise implementation. The same can be done to show

that well-typedness of the more-precise main expression implies well-typedness of the less-precise

main expression. Altogether this guarantees that the less-precise program is well-typed if the

more-precise program is. □

The following lemma makes use of subsumptive supertyping (across hierarchies), which we

define in Figure A.11. Subsumptive supertyping is designed to have the property that the subtype

is usable in all settings where the supertype is usable, as the following lemma proves.

Lemma A.1. For all programs satisfying ⊢ P, any hierarchy and signature satisfying ⊢ HP ⊑ H ′,
⊢ SP ⊑ S′, ⊢ H ′, andH ′ ⊢ S′

: H ′ have the property that all expressions satisfying P ⊑ H ′ ⊢ 𝑒 ⊑ 𝑒 ′

also satisfy both of the following for all type contexts and types:

HP | SP | Γ ⊢ 𝑒 ↓ 𝜏 ∧ HP ⊑ H ′ ⊢ Γ :> Γ′ =⇒ ∀𝜏 ′. ⊢ 𝜏 ⊑ 𝜏 ′ =⇒ H ′ | S′ | Γ′ ⊢ 𝑒 ′ ↓ 𝜏 ′
HP | SP | Γ ⊢ 𝑒 ↑ 𝜏 ∧ HP ⊑ H ′ ⊢ Γ :> Γ′ =⇒ ∃𝜏 ′. HP ⊑ H ′ ⊢ 𝜏 :> 𝜏 ′ ∧ H ′ | S′ | Γ′ ⊢ 𝑒 ′ ↑ 𝜏 ′

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:41

H ⊑ H ⊢ 𝜏 :> 𝜏

H ′ ⊢ 𝜏 ′ H ⊢ 𝜏≤ ≤ 𝜏 ⊢ 𝜏≤ ⊑ 𝜏 ′

H ⊑ H ′ ⊢ 𝜏 :> 𝜏 ′

H ⊑ H ⊢ Γ :> Γ

H ⊑ H ′ ⊢ ∅ :> ∅
H ⊑ H ′ ⊢ Γ :> Γ′ H ⊑ H ′ ⊢ 𝜏 :> 𝜏 ′

H ⊑ H ′ ⊢ Γ, 𝑥 : 𝜏 :> Γ′, 𝑥 : 𝜏 ′

Fig. A.11. Subsumptive Supertyping

Proof. The two properties respectively regarding type-checking and type-synthesis are proven

simultaneously by induction on the proof of P ⊑ H ′ ⊢ 𝑒 ⊑ 𝑒 ′. Each case is straightforward, though

occasionally one needs to prove a simple lemma that a lookup judgement respects subsumptive

supertyping or about how the various subtyping judgements interact. □

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:42 Fabian Muehlboeck and Ross Tate
L
o
w
e
r
e
d

Program
ˇP ::= ⟨H | S | ˇI | 𝑒⟩ Method Body

ˇ𝑏 ::= (Γ) ↦→ 𝑒 : 𝜏

Type Context Γ̌ ::= ∅ | Γ̌, 𝑥 Implementation
ˇI ::= ∅ | ˇI;𝑥 : 𝐶 (Γ̌){𝑓 := 𝑒; . . . | 𝑚 ˇ𝑏}

Expression 𝑒 ::= 𝑥 | let ⟨Γ̌⟩ := ⟨𝑒, . . .⟩ in 𝑒 | false | true | 𝑒 == 𝑒
| 𝑒.𝑓 𝛿 | 𝑒.𝑓 𝛿 := 𝑒 | 𝑒.𝑚(𝑒, . . .)𝛿
| new 𝐶 (𝑒, . . .) | new _⟨ ˇ𝑏⟩ | new 𝑥 := {𝑓 := 𝑒; . . . | 𝑚 ˇ𝑏; . . .}
| ℓ | ⟨ℓ .𝑓 ⟩ | 𝐶 (𝑣, . . .){𝑒, . . .} | cast𝛾 𝑒 to 𝜏 | impose𝛾 ℓ .𝑚 on 𝑒

Location ℓ Value 𝑣 ::= false | true | ℓ | ⟨ℓ .𝑓 ⟩
Guard Mode 𝛾 ::= ∅ | dyn Dispatch Mode 𝛿 ::= ⟨𝜏⟩

Fig. A.12. Lowered Grammar (repeat of Figure 11)

Heap 𝐻 ::= ∅ | 𝐻 ; ℓ ↦→ ℎ Mark ` ::= init | mut
Heap Value ℎ ::= 𝐶 (𝑣, . . .){𝑣, . . .} | _]𝑏 | {𝑓 ↦→` 𝑣 ; . . . | 𝑚𝑏; . . .}] Imposition] ::= ∅ |], 𝐼

Fig. A.13. Heap Grammar (repeat of Figure 13)

A.4 Lowered Grammar
The semantics of MonNom is given by lowering to a lowered grammar, shown in Figure A.12. In

doing so, type annotations are removed (except in method bodies, where they have relevance to

the semantics of both invocation and casting) but complementary casts are inserted. Furthermore,

method invocations are introduced as a distinct construct (with _-invocation as a special case), and

all field accesses, field mutations, and method invocations are given a dispatch mode.

The lowered grammar also has a number of new constructs that arise during execution. Bound

methods result from untyped accesses of field names that turn out to be the names of methods

in the object. Method invocations reduce to calls to method bodies that are guarded according to

whether the invocation guarantees the argument values will belong to the parameter types. Class

constructors reduce to initializing the fields before actually allocating the class instance. Casts

dynamically check to see whether the value has the given type, sometimes mutating the heap to

place an imposition on the value so that it does. Typed invocations on untyped receivers need to

cast the value returned by the receiver to all the types that the caller might be expecting based on

the method that was called and the interfaces that the receiver supposedly implements.

In the heap, there are three heap values: class instances, lambda closures, and record instances.

Lambda closures and record instances each have a list of interfaces that have been imposed on

them. Fields of record instances each have a mark indicating whether the field has been mutated or

not.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:43

H | S ⊢ ˇI : S
H0 | S0 ⊢ ∅ : ∅

H0 | S0 ⊢ ˇI : S
H0 | S0 ⊢ ˇI : S; 𝐼 {. . .}

H0 | S0 ⊢ ˇI : S
⊢ Γ̌ : ®𝜏 { Γ ∀𝑖 . H0 | S0 | ∅ | Γ ⊢ 𝑒𝑖 : 𝜏𝑖 ∀𝑖 . ⊢ ˇ𝑏𝑖 : 𝑠𝑖 ∀𝑖 . H0 | S0 | ∅ | Γ, 𝑥 : 𝐶 ⊢ ˇ𝑏𝑖 :

H0 | S0 ⊢ I;𝑥 : 𝐶 (Γ̌){𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . .} : S;𝐶{𝑚1𝑠1; . . .};𝐶 (®𝜏){𝑓1 : 𝜏1; . . .}

⊢ Γ̌ : ®𝜏 { Γ ⊢ ˇ𝑏 : 𝑠

⊢ ∅ : ∅ { ∅
⊢ Γ̌ : ®𝜏 { Γ

⊢ Γ̌, 𝑥 : ®𝜏, 𝜏 { Γ, 𝑥 : 𝜏

⊢ Γ : ®𝜏
⊢ (Γ) ↦→ 𝑒 : 𝜏 : (®𝜏) : 𝜏

⊢ ˇP ⊢ H H ⊢ S : H H | S ⊢ ˇI : S H | S | ∅ | ∅ ⊢ 𝑒 : B

⊢ ⟨H | S | ˇI | 𝑒⟩

Fig. A.14. Lowered-Program Typing

Heap Type Σ ::= ∅ | Σ, ℓ : 𝜎

Heap-Value Type 𝜎 ::= 𝐶 | {𝑓 , . . .}]
H | S ⊢ 𝐻 : Σ ∀𝑖, 𝑖 ′. ℓ𝑖 = ℓ𝑖′ =⇒ 𝑖 = 𝑖 ′ ∀ℓ : 𝜎 ∈ Σ. ∃𝑖 . ℓ𝑖 = ℓ ∧ H | S | Σ ⊢ H𝑖 : 𝜎

H | S ⊢ ℓ1 ↦→ ℎ1; . . . : Σ

H | S | Σ ⊢ ℎ : 𝜎

𝐶 (𝜏𝑥 ;1, . . .){𝑓1 : 𝜏𝑓 ;1; . . .} ∈ S
∀𝑖 . H | S | Σ | ∅ ⊢ 𝑣𝑥 ;𝑖 : 𝜏𝑥 ;𝑖

∀𝑖 . H | S | Σ | ∅ ⊢ 𝑣 𝑓 ;𝑖 : 𝜏𝑓 ;𝑖

H | S | Σ ⊢ 𝐶 (𝑣𝑥 ;1, . . .){𝑣 𝑓 ;1, . . .} : 𝐶

H | S | Σ | ∅ ⊢ ˇ𝑏 : 𝑠 ∀𝑖 ′.∃𝑖 . H ⊢ 𝐼𝑖 ≤ 𝐼 ′𝑖′

H | S | Σ ⊢ _𝐼1,... ˇ𝑏 : {}𝐼 ′
1
,...

∀𝑖, 𝑖 ′. 𝑓𝑖 = 𝑓𝑖′ =⇒ 𝑖 = 𝑖 ′ ∀𝑖, 𝑖 ′. 𝑚𝑖 =𝑚𝑖′ =⇒ 𝑖 = 𝑖 ′

�𝑖, 𝑖 ′. 𝑓𝑖 =𝑚𝑖′ ∀𝑖 . H | S | Σ | ∅ ⊢ 𝑣𝑖 : 𝜏𝑖 ∀𝑖 . H | S | Σ | ∅ ⊢ ˇ𝑏𝑖 : 𝑠𝑖
∀𝑖, 𝑠 . S ⊢ 𝐼𝑖 ._𝑠 =⇒ ∃𝑖 ′. 𝑚𝑖′ = _ ∀𝑖 ′.∃𝑖 . 𝑚𝑖 = 𝑓 ′𝑖′ ∀𝑖 ′.∃𝑖 . H ⊢ 𝐼𝑖 ≤ 𝐼 ′𝑖′

H | S | Σ ⊢ {𝑓1 ↦→`1
𝑣1; . . . | 𝑚1

ˇ𝑏1; . . .}𝐼1,... : {𝑓 ′
1
, . . .}𝐼 ′

1
,...

H ⊢ 𝑠 ◁ 𝑠 H ⊢ ˇ𝑏 ◁ 𝑠∀𝑖 . H ⊢ 𝜏 ′𝑖 ◁ 𝜏𝑖 H ⊢ 𝜏 ◁ 𝜏 ′

H ⊢ (𝜏1, . . .) : 𝜏 ◁ (𝜏 ′
1
, . . .) : 𝜏 ′

⊢ ˇ𝑏 : 𝑠 H ⊢ 𝑠 ◁ 𝑠 ′

H ⊢ ˇ𝑏 ◁ 𝑠 ′

Fig. A.15. Heap Typing

A.5 Lowered Typing
Although not discussed in the main body of the paper, lowered MonNom also has a type system,

which is used to define the invariant that is key to our safety theorem.

A.5.1 Lowered-Program Typing. Lowered-program typing, defined in Figure A.14, is practically

identical to program typing.

A.5.2 Heap Typing. Although when programs are first lowered there are no locations in the

resulting lowered expressions, as the program evaluates locations and dependencies on the heap

are introduced. To facilitate the proofs, lowered-expression typing is defined in terms of a heap

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:44 Fabian Muehlboeck and Ross Tate

H | S | Σ | Γ ⊢ 𝑒 : 𝜏 H | S | Σ | Γ ⊢ 𝑒 : 𝜏 H ⊢ 𝜏 ◀ 𝜏 ′

H | S | Σ | Γ ⊢ 𝑒 : 𝜏 ′

Γ ⊢ 𝑥 : 𝜏

H | S | Σ | Γ ⊢ 𝑥 : 𝜏

∀𝑖 . H | S | Σ | Γ ⊢ 𝑒𝑖 : 𝜏𝑖 H | S | Σ | Γ, 𝑥1 : 𝜏1, . . . ⊢ 𝑒 : 𝜏

H | S | Σ | Γ ⊢ let ⟨𝑥1, . . .⟩ := ⟨𝑒1, . . .⟩ in 𝑒 : 𝜏

H | S | Σ | Γ ⊢ false : B H | S | Σ | Γ ⊢ true : B

H | S | Σ | Γ ⊢ 𝑒1 : 𝜏1 H | S | Σ | Γ ⊢ 𝑒2 : 𝜏2

H | S | Σ | Γ ⊢ 𝑒1 == 𝑒2 : B

H | S | Σ | Γ ⊢ 𝑒 : 𝜏𝛿
S ⊢ 𝜏𝛿 .𝑓 : 𝜏

H | S | Σ | Γ ⊢ 𝑒.𝑓 ⟨𝜏𝛿 ⟩
: 𝜏

H | S | Σ | Γ ⊢ 𝑒 : 𝜏𝛿
S ⊢ 𝜏𝛿 .𝑓 : 𝜏𝑓 H | S | Σ | Γ ⊢ 𝑒𝑓 : 𝜏𝑓

H | S | Σ | Γ ⊢ 𝑒.𝑓 ⟨𝜏𝛿 ⟩
:= 𝑒𝑓 : 𝜏𝛿

H | S | Σ | Γ ⊢ 𝑒 : 𝜏𝛿 S ⊢ 𝜏𝛿 .𝑚(𝜏1, . . .) : 𝜏 ∀𝑖 . H | S | Σ | Γ ⊢ 𝑒𝑖 : 𝜏𝑖

H | S | Σ | Γ ⊢ 𝑒.𝑚(𝑒1, . . .) ⟨𝜏𝛿 ⟩ : 𝜏

S ⊢ 𝐶 (𝜏1, . . .) ∀𝑖 . H | S | Σ | Γ ⊢ 𝑒𝑖 : 𝜏𝑖

H | S | Σ | Γ ⊢ new 𝐶 (𝑒1, . . .) : 𝐶

H | S | Σ | Γ ⊢ ˇ𝑏 : 𝑠

H | S | Σ | Γ ⊢ new _⟨ ˇ𝑏⟩ : dyn
∀𝑖, 𝑖 ′. 𝑓𝑖 = 𝑓𝑖′ =⇒ 𝑖 = 𝑖 ′ ∀𝑖 . H | S | Σ | Γ ⊢ 𝑒𝑖 : 𝜏𝑖

�𝑖, 𝑖 ′. 𝑓𝑖 =𝑚𝑖′ ∀𝑖, 𝑖 ′. 𝑚𝑖 =𝑚𝑖′ =⇒ 𝑖 = 𝑖 ′ ∀𝑖 . H | S | Σ | Γ, 𝑥 : dyn ⊢ ˇ𝑏𝑖 : 𝑠𝑖

H | S | Σ | Γ ⊢ new 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . .} : dyn
ℓ : 𝐶 ∈ Σ

H | S | Σ | Γ ⊢ ℓ : 𝐶

ℓ : {. . .}𝐼1,... ∈ Σ

H | S | Σ | Γ ⊢ ℓ : 𝐼𝑖

ℓ : 𝐶 ∈ Σ S ⊢ 𝐶.𝑓 𝑠
H | S | Σ | Γ ⊢ ⟨ℓ .𝑓 ⟩ : dyn

ℓ : {𝑓1, . . .}... ∈ Σ

H | S | Σ | Γ ⊢ ⟨ℓ .𝑓𝑖⟩ : dyn
𝐶 (𝜏𝑥 ;1, . . .){𝑓1 : 𝜏𝑓 ;1; . . .} ∈ S ∀𝑖 . H | S | Σ | Γ ⊢ 𝑣𝑖 : 𝜏𝑥 ;𝑖 ∀𝑖 . H | S | Σ | Γ ⊢ 𝑒𝑖 : 𝜏𝑓 ;𝑖

H | S | Σ | Γ ⊢ 𝐶 (𝑣1, . . .){𝑒1, . . .} : 𝐶

H ⊢ 𝜏 H | S | Σ | Γ ⊢ 𝑒 : 𝜏

H | S | Σ | Γ ⊢ cast∅ 𝑒 to 𝜏 : 𝜏

H ⊢ 𝜏 H | S | Σ | Γ ⊢ 𝑒 : 𝜏 ′

H | S | Σ | Γ ⊢ castdyn 𝑒 to 𝜏 : 𝜏

ℓ : 𝐶 ∈ Σ
S ⊢ 𝐶.𝑚(. . .) : 𝜏 H | S | Σ | Γ ⊢ 𝑒 : 𝜏

H | S | Σ | Γ ⊢ impose∅ ℓ .𝑚 on 𝑒 : 𝜏

ℓ : {. . .}𝐼1,... ∈ Σ
S ⊢ 𝐼𝑖 .𝑚(. . .) : 𝜏 H | S | Σ | Γ ⊢ 𝑒 : 𝜏 ′

H | S | Σ | Γ ⊢ imposedyn ℓ .𝑚 on 𝑒 : 𝜏

H | S | Σ | Γ ⊢ ˇ𝑏 : 𝑠 H | S | Σ | Γ, Γ′ ⊢ 𝑒 : 𝜏

H | S | Σ | Γ ⊢ (Γ′) ↦→ 𝑒 : 𝜏 : (Γ′) : 𝜏

Fig. A.16. Lowered-Expression Typing

type abstracting the specific state of the heap. Figure A.15 introduces heap types, as well as the

rules for typing heaps. These are defined in terms of heap-value types, which indicate whether the

location represents a class instance or a structural object with certain named methods and imposed

interfaces.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:45

A.5.3 Lowered-Expression Typing. Lowered-expression typing is defined in Figure A.16. The rules

are overall unsurprising. They are parameterized by the heap type in order to type locations

and bound methods. The first rule guarantees subsumption with respect to pessimistic subyping,
illustrating that lowered-expression typing is pessimistically typed rather than optimistically typed,

which is why there is no need to distinguish between checking and synthesis. Similarly, dispatch

modes—rather than just the receiver’s type—are used to check field access, field mutation, and

method invocation.

The most important detail to notice is that guarded and unguarded operations are type-checked

differently. The reason is that guarded operations are permitted to err and so can have rather

lax requirements on their inputs. On the other hand, unguarded operations must ensure that the

operation can make progress and so must check that their inputs are guaranteed to satisfy the

requisite conditions.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:46 Fabian Muehlboeck and Ross Tate

H | S | Γ ⊢ 𝑒 ↓ 𝜏 { 𝑒 H | S | Γ ⊢ 𝑒 { 𝑒

H | S | Γ ⊢ 𝑒 ↓ 𝜏 { castdyn 𝑒 to 𝜏

H | S | Γ ⊢ 𝑒 { 𝑒

Γ ⊢ 𝑥 : 𝜏

H | S | Γ ⊢ 𝑥 { 𝑥

∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖 { 𝑒𝑖 H | S | Γ, 𝑥1 : 𝜏1, . . . ⊢ 𝑒 ↑ 𝑒
H | S | Γ ⊢ let ⟨𝑥1 : 𝜏1, . . .⟩ := ⟨𝑒1, . . .⟩ in 𝑒 { let ⟨𝑥1, . . .⟩ := ⟨𝑒1, . . .⟩ in 𝑒

H | S | Γ ⊢ false { false H | S | Γ ⊢ true { true

H | S | Γ ⊢ 𝑒1 { 𝑒1 H | S | Γ ⊢ 𝑒2 { 𝑒2

H | S | Γ ⊢ 𝑒1 == 𝑒2 { 𝑒1 == 𝑒2

H | S | Γ ⊢ 𝑒 ↑ 𝜏 H | S | Γ ⊢ 𝑒 { 𝑒

H | S | Γ ⊢ 𝑒.𝑓 ↑ 𝑒.𝑓 ⟨𝜏 ⟩

H | S | Γ ⊢ 𝑒 ↑ 𝜏 H | S | Γ ⊢ 𝑒 { 𝑒

S ⊢ 𝜏 .𝑓 : 𝜏𝑓 H | S | Γ ⊢ 𝑒𝑓 ↓ 𝜏𝑓 { 𝑒𝑓

H | S | Γ ⊢ 𝑒.𝑓 := 𝑒𝑓 { 𝑒.𝑓 ⟨𝜏 ⟩
:= 𝑒𝑓

H | S | Γ ⊢ 𝑒 ↑ 𝜏
H | S | Γ ⊢ 𝑒 { 𝑒 S ⊢ 𝜏 ._(𝜏1, . . .) : 𝜏_

∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖 { 𝑒𝑖

H | S | Γ ⊢ 𝑒 (𝑒1, . . .) { 𝑒._(𝑒1, . . .) ⟨𝜏 ⟩

H | S | Γ ⊢ 𝑒 ↑ 𝜏
H | S | Γ ⊢ 𝑒 { 𝑒 S ⊢ 𝜏 .𝑓 (𝜏1, . . .) : 𝜏𝑓

∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖 { 𝑒𝑖

H | S | Γ ⊢ 𝑒.𝑓 (𝑒1, . . .) { 𝑒.𝑓 (𝑒1, . . .) ⟨𝜏 ⟩

S ⊢ 𝐶 (𝜏1, . . .) ∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖 { 𝑒𝑖

H | S | Γ ⊢ new 𝐶 (𝑒1, . . .) ↑ new 𝐶 (𝑒1, . . .)
H | S | Γ ⊢ 𝑏 { ˇ𝑏

H | S | Γ ⊢ new _⟨𝑏⟩ { new _⟨ ˇ𝑏⟩
∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 { 𝑒𝑖 ∀𝑖 . H | S | Γ, 𝑥 : dyn ⊢ 𝑏𝑖 { ˇ𝑏𝑖

H | S | Γ ⊢ new 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} { new 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . .}

H | S | Γ ⊢ 𝑏 { ˇ𝑏 ⊢ Γ { Γ̌

H | S | Γ, Γ𝑏 ⊢ 𝑒𝑏 ↓ 𝜏𝑏 { 𝑒

H | S | Γ ⊢ (Γ𝑏) ↦→ 𝑒𝑏 : 𝜏𝑏 { (Γ𝑏) ↦→ 𝑒 : 𝜏𝑏 ⊢ ∅ { ∅
⊢ Γ { Γ̌

⊢ Γ, 𝑥 : 𝜏 { Γ̌, 𝑥

H | S ⊢ I { ˇI H | S ⊢ ∅ { ∅
H | S ⊢ I { ˇI

⊢ Γ { Γ̌ ∀𝑖 . S ⊢ 𝐶.𝑓𝑖 : 𝜏𝑖 ∀𝑖 . H | S | Γ ⊢ 𝑒𝑖 ↓ 𝜏𝑖 { 𝑒𝑖 ∀𝑖 . H | S | Γ ⊢ 𝑏𝑖 { ˇ𝑏𝑖

H | S ⊢ I;𝑥 : 𝐶 (Γ){𝑓1 := 𝑒1; . . . | 𝑚1𝑏1; . . .} { ˇI;𝑥 : 𝐶 (Γ̌){𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . .}

⊢ P { ˇP H | S ⊢ I { ˇI H | S | ∅ ⊢ 𝑒 ↓ B { 𝑒

⊢ ⟨H | S | I | 𝑒⟩ { ⟨H | S | ˇI | 𝑒⟩

Fig. A.17. Lowering (extension of Figure 12)

A.6 Lowering
MonNom programs are given a semantics by lowering them to lowered programs using the

judgements in Figure A.17. Most of these rules have already been discussed in Section 5.1, and there

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:47

is nothing particularly interesting among the remaining rules. More important are the following

properties of lowering.

Lemma A.2. For any program satisfying ⊢ P there exists a lowered program satisfying ⊢ P { ˇP.

Proof. The corresponding lemma for totality of lowering exceptions is easily proven by induction

on the proof of well-typedness. Totality of lowering programs is then a trivial corollary. □

Lemma A.3. Any programs and lowered programs satisfying both ⊢ P and ⊢ P { ˇP furthermore
satisfy ⊢ ˇP.

Proof. The corresponding lemma for type-preservation of lowering exceptions is easily proven

by induction on the proof of lowering. Type-preservation of lowering programs is then a trivial

corollary. □

Combined, these lemmas guarantee that anywell-typed program lowers into awell-typed lowered

program, and as such lowering is a reliable means for giving programs semantics. Note, though, that

there may be multiple such lowerings. In general, this could lead to unwanted non-determinism,

but in Section A.9.5 we will show that all such lowerings are necessarily semantically equivalent.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:48 Fabian Muehlboeck and Ross Tate

ˇP | 𝐻 ⊢ ℓ .𝑓 ↦→ 𝑣

ℓ ↦→ 𝐶 (. . .){𝑣1, . . .} ∈ 𝐻 𝐶 (. . .){𝑓1 : 𝜏1; . . .} ∈ S ˇP
ˇP | 𝐻 ⊢ ℓ .𝑓𝑖 ↦→ 𝑣𝑖

ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . | . . .}] ∈ 𝐻

ˇP | 𝐻 ⊢ ℓ .𝑓𝑖 ↦→ 𝑣𝑖

ˇP | 𝐻 → 𝐻 ⊢ ℓ .𝑓 := 𝑣

ℓ ↦→ 𝐶 (𝑣𝑥 ;1, . . .){𝑣 𝑓 ;1, . . . , 𝑣, 𝑣
′
𝑓 ;1
, . . .} ∈ 𝐻 𝐶 (. . .){𝑓1 : 𝜏1; . . . ; 𝑓 : 𝜏 ; 𝑓 ′

1
: 𝜏 ′

1
; . . .} ∈ S ˇP

ˇP | 𝐻 → 𝐻 ′ ⊢ 𝑣 : 𝜏 𝐻 ′′ = 𝐻 ′[ℓ ↦→ 𝐶 (𝑣𝑥 ;1, . . .){𝑣 𝑓 ;1, . . . , 𝑣
′, 𝑣 ′

𝑓 ;1
, . . .}]

ˇP | 𝐻 → 𝐻 ′′ ⊢ ℓ .𝑓 := 𝑣 ′

ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . ; 𝑓 ↦→` 𝑣 ; 𝑓 ′

1
↦→`′

1

𝑣 ′
1
| 𝑚1

ˇ𝑏1; . . .}] ∈ 𝐻

𝐻 ′ = 𝐻 [ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . ; 𝑓 ↦→mut 𝑣

′
; 𝑓 ′

1
↦→`′

1

𝑣 ′
1
| 𝑚1

ˇ𝑏1; . . .}]]
ˇP | 𝐻 → 𝐻 ′ ⊢ ℓ .𝑓 := 𝑣 ′

ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . | 𝑚1

ˇ𝑏1; . . .}] ∈ 𝐻

�𝑖 . 𝑓 = 𝑓𝑖 �𝑖 . 𝑓 =𝑚𝑖 𝐻 ′ = 𝐻 [ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . ; 𝑓 ↦→init 𝑣

′ | 𝑚1

ˇ𝑏1; . . .}]]
ˇP | 𝐻 → 𝐻 ′ ⊢ ℓ .𝑓 := 𝑣 ′

ˇP | 𝐻 ⊢ 𝑣 .𝑚 {𝛾
ˇ𝑏

ℓ ↦→ 𝐶 (𝑣1, . . .){. . .} ∈ 𝐻 𝑥 : 𝐶 (𝑥1, . . .){. . . | 𝑚1

ˇ𝑏1; . . .} ∈ ˇI ˇP
ˇP | 𝐻 ⊢ ℓ .𝑚𝑖 {∅ ˇ𝑏𝑖 [𝑥 ↦→ ℓ, 𝑥1 ↦→ 𝑣1, . . .]

ℓ ↦→ _] ˇ𝑏 ∈ 𝐻

ˇP | 𝐻 ⊢ ℓ ._ {dyn ˇ𝑏

ℓ ↦→ {. . . | 𝑚1

ˇ𝑏1; . . .}] ∈ 𝐻

ˇP | 𝐻 ⊢ ℓ .𝑚𝑖 {dyn ˇ𝑏𝑖

ˇP | 𝐻 ⊢ ℓ .𝑓 {𝛾
ˇ𝑏

ˇP | 𝐻 ⊢ ⟨ℓ .𝑓 ⟩._ {dyn ˇ𝑏

ˇP | 𝐻 → 𝐻 ⊢ ℓ .𝑚 {𝛾
ˇ𝑏

ˇP | 𝐻 ⊢ ℓ .𝑚 {𝛾
ˇ𝑏

ˇP | 𝐻 → 𝐻 ⊢ ℓ .𝑚 {𝛾
ˇ𝑏

ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . ; 𝑓 ↦→init 𝑣 ; 𝑓 ′

1
↦→`′

1

𝑣 ′
1
; . . . | 𝑚1

ˇ𝑏1; . . .}] ∈ 𝐻
ˇP | 𝐻 ⊢ 𝑣 ._ {𝛾

ˇ𝑏

𝐻 ′ = 𝐻 [ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . ; 𝑓 ↦→init 𝑣 ; 𝑓 ′

1
↦→`′

1

𝑣 ′
1
; . . . | 𝑚1

ˇ𝑏1; . . .}]]
ˇP | 𝐻 → 𝐻 ′ ⊢ ℓ .𝑓 {dyn ˇ𝑏

H | 𝐻 ⊢ ℓ ↦→]

ℓ ↦→ 𝐶 (. . .){. . .} ∈ 𝐻 𝐶 ≤ 𝐼1, . . . ∈ H
H | 𝐻 ⊢ ℓ ↦→ 𝐼1, . . .

ℓ ↦→ _] ˇ𝑏 ∈ 𝐻

H | 𝐻 ⊢ ℓ ↦→]

ℓ ↦→ {. . . | . . .}] ∈ 𝐻

H | 𝐻 ⊢ ℓ ↦→]

Fig. A.18. Heap Semantics (extension of Figure 14)

A.7 Reduction
After lowering a program, its semantics is determined by repeatedly reducing the main expression

of the program (accummulating a heap in the process).

A.7.1 Heap Semantics. Expression reduction utilizes a number of operations on the heap, defined

in Figure A.18. These judgements are used to get the value of a field, set the value of a field, direcly

lookup the body of a method, indirectly lookup the body of a method (freezing the corresponding

field if appropriate), and fetch the list of interfaces imposed upon a value (or list of interfaces

implemented by the class the object is an instance of). Besides what was already discussed in

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:49

ˇP | 𝐻 → 𝐻 ⊢ 𝑣 : ®𝜏

ˇP | 𝐻 → 𝐻 ⊢ 𝑣 : ∅

ˇP | 𝐻 → 𝐻 ′ ⊢ 𝑣 : ®𝜏 ˇP | 𝐻 ′ ⊢ 𝑣 : 𝜏

ˇP | 𝐻 → 𝐻 ′ ⊢ 𝑣 : ®𝜏, 𝜏
ˇP | 𝐻 → 𝐻 ′ ⊢ ℓ : ®𝜏
ℓ ↦→ _] ˇ𝑏 ∈ 𝐻 ′

𝐻 ′′ = 𝐻 ′[ℓ ↦→ _],𝐼 ˇ𝑏]
ˇP | 𝐻 → 𝐻 ′′ ⊢ ℓ : ®𝜏, 𝐼

ˇP | 𝐻 → 𝐻 ′ ⊢ ℓ : ®𝜏
ℓ ↦→ {𝑓1 ↦→`1

𝑣1; . . . | 𝑚1

ˇ𝑏1; . . .}] ∈ 𝐻 ′ ∀𝑠 . S ˇP ⊢ 𝐼 ._𝑠 =⇒ ∃𝑖 . 𝑚𝑖 = _

𝐻 ′′ = 𝐻 ′[ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . | 𝑚1

ˇ𝑏1; . . .}],𝐼]
ˇP | 𝐻 → 𝐻 ′′ ⊢ ℓ : ®𝜏, 𝐼

ˇP | 𝐻 ⊢ 𝑣 : 𝜏

ˇP | 𝐻 ⊢ 𝑣 : dyn ˇP | 𝐻 ⊢ false : B ˇP | 𝐻 ⊢ true : B

ℓ ↦→ 𝐶 (. . .){. . .} ∈ 𝐻

H ˇP ⊢ 𝐶 ◀ 𝜏

ˇP | 𝐻 ⊢ ℓ : 𝜏

H ˇP | 𝐻 ⊢ ℓ ↦→]

H ˇP ⊢] ◀ 𝜏

ˇP | 𝐻 ⊢ ℓ : 𝜏

H ⊢] ◀ 𝜏

H ⊢ ∅ ◀ dyn

H ⊢] ◀ 𝜏

H ⊢], 𝐼 ◀ 𝜏

H ⊢ 𝐼 ◀ 𝜏

H ⊢], 𝐼 ◀ 𝜏

S ⊢ (]).𝑚 : ®𝜏

S ⊢ (∅).𝑚 : ∅
S ⊢ (]).𝑚 : ®𝜏 S ⊢ 𝐼 .𝑚(. . .) : 𝜏

S ⊢ (], 𝐼).𝑚 : ®𝜏, 𝜏
S ⊢ (]).𝑚 : ®𝜏 �𝑠 . S ⊢ 𝐼 .𝑚𝑠

S ⊢ (], 𝐼).𝑚 : ®𝜏

Fig. A.19. Cast Semantics (extension of Figure 15)

Section 5.2, the only detail to note is that the rule for setting the value of a class field first casts the

value to the type of the class field.

A.7.2 Cast Semantics. MonNom’s casting semantics are shown in Figure A.19. Only one judgement

is new compared to Figure 15, and its definition is straightforward.

A.7.3 Lowered-Expression Semantics. Figure A.20 provides the lowered-expression semantics for

MonNom. These reduction semantics take an expression, split it uniquely into an evaluation context

of some redex, and then reduce the redex within the evaluation context. The upper judgement

specifies an “allocated” heap, which the lower judgement then incorporates into the overall heap.

In particular, the upper judgements before-and-after heaps have mappings for the same locations,

with the latter preserving the type of the former. The reduced expression may reference locations

in the “allocated” heap, but these locations are conceptually fresh, and as such one could rename all

the new locations in the allocated heap and propagate the renaming throughout the allocated heap

and the reduced expression and the result would be another viable reduction for the judgement.

This separation of the allocated heap facilitates many of the proofs, particularly those that require

reordering of independent operations (to accommodate field initializations being moved to after

record allocation).

A.7.4 Error Semantics. As already discussed in Section 5.5, MonNom distinguishes between getting

stuck and erring. This is formalized in Figure A.21, which is simply a repeat of Figure 16.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:50 Fabian Muehlboeck and Ross Tate

Redex 𝑟 ::= let ⟨Γ̌⟩ := ⟨𝑣, . . .⟩ in 𝑒 | 𝑣 == 𝑣 | 𝑣 .𝑓 𝛿 | 𝑣 .𝑓 𝛿 := 𝑣 | 𝑣 .𝑚(𝑣, . . .)𝛿
| new 𝐶 (𝑣, . . .) | new _⟨ ˇ𝑏⟩ | new 𝑥 := {𝑓 := 𝑣 ; . . . | 𝑚 ˇ𝑏; . . .}
| 𝐶 (𝑣, . . .){𝑣, . . .} | cast𝛾 𝑣 to 𝜏 | impose𝛾 ℓ .𝑚 on 𝑣

Evaluation Context 𝐸 ::= • | let ⟨Γ̌⟩ := ⟨𝑣, . . . , 𝐸, 𝑒, . . .⟩ in 𝑒 | 𝐸 == 𝑒 | 𝑣 ==𝐸
| 𝐸.𝑓 𝛿 | 𝐸.𝑓 𝛿 := 𝑒 | 𝑣 .𝑓 𝛿 := 𝐸 | 𝐸.𝑚(𝑒, . . .)𝛿 | 𝑣 .𝑚(𝑣, . . . , 𝐸, 𝑒, . . .)𝛿
| new 𝐶 (𝑣, . . . , 𝐸, 𝑒, . . .) | new 𝑥 := {𝑓 := 𝑣 ; . . . ; 𝑓 := 𝐸; 𝑓 := 𝑒; . . . | 𝑚𝑏; . . .}
| 𝐶 (𝑣, . . .){𝑣, . . . , 𝐸, 𝑒, . . .} | cast𝛾 𝐸 to 𝜏 | impose𝛾 ℓ .𝑚 on 𝐸

ˇP ⊢ 𝐻 | 𝑒 𝐻−→ 𝐻 | 𝑒 ˇP ⊢ 𝐻 | 𝑟 𝐻−→ 𝐻 | 𝑒

ˇP ⊢ 𝐻 | 𝑟 𝐻 ′′
−−→ 𝐻 ′ | 𝑒 ′

ˇP ⊢ 𝐻 | 𝐸 [𝑟] 𝐻 ′′
−−→ 𝐻 ′ | 𝐸 [𝑒 ′] ˇP ⊢ 𝐻 | let ⟨𝑥1, . . .⟩ := ⟨𝑣1, . . .⟩ in 𝑒

∅−→ 𝐻 | 𝑒 [𝑥1 ↦→ 𝑣1, . . .]

ˇP ⊢ 𝐻 | 𝑣 == 𝑣 ∅−→ 𝐻 | true

𝑣1 ≠ 𝑣2

ˇP ⊢ 𝐻 | 𝑣1 == 𝑣2

∅−→ 𝐻 | false
ˇP | 𝐻 ⊢ ℓ .𝑓 ↦→ 𝑣

ˇP ⊢ 𝐻 | ℓ .𝑓 𝛿 ∅−→ 𝐻 | 𝑣

ˇP | 𝐻 ⊢ ℓ .𝑓 {𝛾
ˇ𝑏

ˇP ⊢ 𝐻 | ℓ .𝑓 ⟨dyn⟩ ∅−→ 𝐻 | ⟨ℓ .𝑓 ⟩

ˇP | 𝐻 → 𝐻 ′ ⊢ ℓ .𝑓 := 𝑣

ˇP ⊢ 𝐻 | ℓ .𝑓 𝛿 := 𝑣
∅−→ 𝐻 ′ | ℓ

ˇP | 𝐻 ⊢ 𝑣 .𝑚 {𝛾 (𝑥1 : 𝜏1, . . .) ↦→ 𝑒 : 𝜏

ˇP ⊢ 𝐻 | 𝑣 .𝑚(𝑣1, . . .) ⟨dyn⟩
∅−→ 𝐻 | cast∅ let ⟨𝑥1, . . .⟩ := ⟨castdyn 𝑣1 to 𝜏1, . . .⟩ in 𝑒 to dyn

ˇP | 𝐻 ⊢ ℓ .𝑓 ↦→ 𝑣 ˇP | 𝐻 ⊢ 𝑣 ._ {𝛾 (𝑥1 : 𝜏1, . . .) ↦→ 𝑒 : 𝜏

ˇP ⊢ 𝐻 | ℓ .𝑓 (𝑣1, . . .) ⟨dyn⟩
∅−→ 𝐻 | cast∅ let ⟨𝑥1, . . .⟩ := ⟨castdyn 𝑣1 to 𝜏1, . . .⟩ in 𝑒 to dyn

ˇP | 𝐻 → 𝐻 ′ ⊢ ℓ .𝑚 {𝛾 (𝑥1 : 𝜏1, . . .) ↦→ 𝑒 : 𝜏

ˇP ⊢ 𝐻 | ℓ .𝑚(𝑣1, . . .) ⟨𝑁 ⟩ ∅−→ 𝐻 ′ | impose𝛾 ℓ .𝑚 on let ⟨𝑥1, . . .⟩ := ⟨cast𝛾 𝑣1 to 𝜏1, . . .⟩ in 𝑒
𝑥 : 𝐶 (𝑥1, . . .){𝑓1 := 𝑒1; . . . | . . .} ∈ ˇI ˇP

ˇP ⊢ 𝐻 | new 𝐶 (𝑣1, . . .)
∅−→ 𝐻 | 𝐶 (𝑣1, . . .){𝑒1 [𝑥1 ↦→ 𝑣1, . . .], . . .}

𝐻 ′′ = ℓ ↦→ _∅ ˇ𝑏

ˇP ⊢ 𝐻 | new _⟨ ˇ𝑏⟩ 𝐻 ′′
−−→ 𝐻 | ℓ

𝐻 ′′ = ℓ ↦→ {𝑓1 ↦→init 𝑣1; . . . | 𝑚1𝑏1 [𝑥 ↦→ ℓ]; . . .}∅
ˇP ⊢ 𝐻 | new 𝑥 := {𝑓1 := 𝑣1; . . . | 𝑚1𝑏1; . . .} 𝐻 ′′

−−→ 𝐻 | ℓ
𝐻 ′′ = ℓ ↦→ 𝐶 (𝑣1, . . .){𝑣 ′1, . . .}

ˇP ⊢ 𝐻 | 𝐶 (𝑣1, . . .){𝑣 ′1, . . .}
𝐻 ′′
−−→ 𝐻 | ℓ

ˇP | 𝐻 → 𝐻 ′ ⊢ 𝑣 : 𝜏

ˇP ⊢ 𝐻 | cast𝛾 𝑣 to 𝜏 ∅−→ 𝐻 ′ | 𝑣
H ˇP | 𝐻 ⊢ ℓ ↦→] S ˇP ⊢ (]).𝑚 : ®𝜏 ˇP | 𝐻 → 𝐻 ′ ⊢ 𝑣 : ®𝜏

ˇP ⊢ 𝐻 | impose𝛾 ℓ .𝑚 on 𝑣
∅−→ 𝐻 ′ | 𝑣

ˇP ⊢ 𝐻 | 𝑒 → 𝐻 | 𝑒 ˇP ⊢ 𝐻 | 𝑒 𝐻 ′′
−−→ 𝐻 ′ | 𝑒 ′ �ℓ, ℎ, ℎ′. ℓ ↦→ ℎ ∈ 𝐻 ′ ∧ ℓ ↦→ ℎ′ ∈ 𝐻 ′′

ˇP ⊢ 𝐻 | 𝑒 → 𝐻 ′
;𝐻 ′′ | 𝑒 ′

Fig. A.20. Lowered-Expression Semantics (extension of Figure 17)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:51

Potentially Erroneous Redex Y ::= 𝑣 .𝑓 ⟨dyn⟩ | 𝑣 .𝑓 ⟨dyn⟩
:= 𝑣 | ℓ .𝑓 (𝑣, . . .) ⟨𝐼 ⟩ | 𝑣 .𝑚(𝑣, . . .) ⟨dyn⟩

| castdyn 𝑣 to 𝑁 | imposedyn ℓ .𝑚 on 𝑣

ˇP ⊢ 𝐻 | 𝑒 → error �𝐻 ′, 𝑒 ′. ˇP ⊢ 𝐻 | Y → 𝐻 ′ | 𝑒 ′

ˇP ⊢ 𝐻 | 𝐸 [Y] → error

Fig. A.21. Error Semantics (repeat of Figure 16)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:52 Fabian Muehlboeck and Ross Tate

Observation 𝑜 ::= false | true | ∞ | error

⊢ P ↠ 𝑜 ⊢ P { ˇP 𝑒1 = 𝑒 ˇP 𝐻1 = ∅
∀𝑖 < 𝑛. ˇP ⊢ 𝐻𝑖 | 𝑒𝑖 → 𝐻𝑖+1 | 𝑒𝑖+1 𝑒𝑛 = 𝑣 𝑜 = 𝑣

⊢ P ↠ 𝑜

⊢ P { ˇP 𝑒1 = 𝑒 ˇP 𝐻1 = ∅
∀𝑖 < 𝑛. ˇP ⊢ 𝐻𝑖 | 𝑒𝑖 → 𝐻𝑖+1 | 𝑒𝑖+1

ˇP ⊢ 𝐻𝑛 | 𝑒𝑛 → error

⊢ P ↠ error

⊢ P { ˇP 𝑒1 = 𝑒 ˇP 𝐻1 = ∅
∀𝑖 ∈ N. ˇP ⊢ 𝐻𝑖 | 𝑒𝑖 → 𝐻𝑖+1 | 𝑒𝑖+1

⊢ P ↠ ∞

Fig. A.22. Program Semantics (repeat of Figure 10)

A.8 Semantics
The semantics of MonNom are repeated in Figure A.22. A program is lowered and then reduced

repeatedly. One observes either a resulting value, an explicit error, or an infinite divergence.

A.8.1 Type Safety.

Theorem 5.2 (Safety). For any program satisfying ⊢ P, there exists an observation satisfying
⊢ P ↠ 𝑜 .

Proof. Lemma A.2 guarantees that there exists some lowered program
ˇP that is a lowering of P.

Lemma A.3 guarantees that that lowering is well-typed. In particular, that implies that 𝑒 ˇP (and

𝑒0) has type B. The following Lemma A.4 then guarantees that the expression is either a Boolean

value (a valid observation), errs (a valid observation), or reduces. And Lemma A.5 ensures that if it

reduces then the result must still have type B. This establishes an invariant of a B-typed expression,
so we can repeat the process until either an observation occurs or it reduces forever (which is also

a valid observation). Thus the program necessarily has some observable semantics (and does not

get stuck without also erring). □

Lemma A.4. For any lowered program, heap, heap type, lowered expression, and type satisfying
⊢ ˇP, H ˇP | S ˇP ⊢ 𝐻 : Σ, and H ˇP | S ˇP | Σ | ∅ ⊢ 𝑒 : 𝜏 , (exactly) one of the following holds:

• the lowered expression 𝑒 is in fact a value 𝑣 ,
• the lowered expression errs, i.e. ˇP ⊢ 𝐻 | 𝑒 → error holds, or
• the lowered expression reduces, i.e. there exists a heap 𝐻 ′ and lowered expression 𝑒 ′ such that

ˇP ⊢ 𝐻 | 𝑒 → 𝐻 ′ | 𝑒 ′ holds.

Proof. Proven by induction on the proof that 𝑒 is well-typed. Each case is straightforward,

sometimes employing simple lemmas about the heap or the like. □

Lemma A.5. For any lowered program, heaps, heap type, lowered expressions, and type satisfying
⊢ ˇP,H ˇP | S ˇP ⊢ 𝐻 : Σ,H ˇP | S ˇP | Σ | ∅ ⊢ 𝑒 : 𝜏 , and ˇP ⊢ 𝐻 | 𝑒 → 𝐻 ′ | 𝑒 ′, there exists a heap type Σ′

such thatH ˇP | S ˇP ⊢ 𝐻 ′
: Σ′ and H ˇP | S ˇP | Σ′ | ∅ ⊢ 𝑒 ′ : 𝜏 both hold.

Proof. Proven by induction on the proof that 𝑒 is well-typed. Each case is straightforward,

sometimes employing simple lemmas about the heap or substitution or the like. □

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:53

ˇP ⊑ H ⊢ ˇI ⊑ ˇI

ˇP ⊑ H ′ ⊢ ∅ ⊑ ∅
¬ H ′ ⊢ 𝐶 ˇP ⊑ H ′ ⊢ ˇI ⊑ ˇI ′

ˇP ⊑ H ′ ⊢ ˇI;𝑥 : 𝐶 (. . .){. . . | . . .} ⊑ ˇI ′

∀𝑖 . H ′ ⊢ 𝜏 ′𝑖 ˇP ⊑ H ′ ⊢ ˇI ⊑ ˇI ′ ∀𝑖 . ⊢ 𝜏𝑖 ⊑ 𝜏 ′𝑖
∀𝑖 . ˇP ⊑ H ′ | ∅ ⊢ 𝑒𝑖 ⊑ ∅ | 𝑒 ′𝑖 ∀𝑖 . ˇP ⊑ H ′ | ∅ ⊢ ˇ𝑏𝑖 [𝑥 ↦→ 𝑥 ′, 𝑥1 ↦→ 𝑥 ′

1
, . . .] ⊑ ∅ | ˇ𝑏 ′𝑖

ˇP ⊑ H ′ ⊢ ˇI;𝑥 : 𝐶 (𝑥1 : 𝜏1, . . .){𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . .} ⊑ ˇI ′
;𝑥 ′

: 𝐶 (𝑥 ′
1

: 𝜏 ′
1
, . . .){𝑓1 := 𝑒 ′

1
; . . . | 𝑚1

ˇ𝑏 ′
1
; . . .}

⊢ ˇP ⊑ ˇP

⊢ H ˇP ⊑ H ˇP′ ⊢ S ˇP ⊑ S ˇP′ ˇP ⊑ H ˇP′ ⊢ I ˇP ⊑ I ˇP′ ˇP ⊑ H ˇP′ | ∅ ⊢ 𝑒 ˇP ⊑ ∅ | 𝑒 ˇP′

⊢ ˇP ⊑ ˇP ′

Fig. A.23. Lowered-Program Precision

A.9 Lowered Precision
Just as there is a lowered type system not discussed in the paper, there is also a lowered precision

relation not discussed in the paper. This precision relation establishes the relationship between

lowered programs that is critical to our theorems.

A.9.1 Lowered-Program Precision. The rules for lowered-program precision, Figure A.23, are the

obvious analog of those for program precision in Figure A.9.

A.9.2 Heap Precision. In Figure A.24 we present the rules for heap precision. Notably, this figure

introduces the concept of a heap correspondence [. This correspondence indicates which locations

and bound methods in the more-precise heap correspond to which locations in the less-precise heap.

The rules are designed so that this correspondence as at most one-to-one. The “at most” qualifier

is important because there can be many locations in the less-precise heap that correspond to no

location in the more-precise heap—rather they represent a method in a more-precise object that

has been implemented as a field in a corresponding less-precise object. This machinery is achieved

by the judgement
ˇP ⊑ H | [⊢ ℓ ↦→ {𝑓 ↦→` 𝑒 ; . . . | 𝑚 ˇ𝑏; . . .}𝜒] ⊑ 𝐻 ′ | ℓ ′ ↦→ ℎ′

: [. In this judgement,

ℓ and ℓ ′ are the corresponding locations, and ℎ′
is a structural heap value containing (relaxations

of) the prescribed fields and methods. Sometimes ℎ′
might represent one of the prescribed methods

using instead a field whose value is a location in the heap 𝐻 ′
, with an appropriate corresponding

heap value. This judgement also takes care of addressing issues with reordering that can arise from

delaying a field initialization until after a record has been allocated, interspersed with using fields

to implement methods.

A.9.3 Lowered-Expression Precision. The lowered-expression precision relation is defined in the

three-page Figure A.25. The first judgement simply uses the heap correspondence to correlate values.

The second judgement, on the other hand, enumerates all of the correspondences between lowered

expressions that arise either directly from the lowering process itself or indirectly from reduction.

The heap in the judgement represents locations that have been allocated in the less-precise program

that have no corresponding location in the more-precise program either because, in particular,

evaluation is in the midst of constructing a record where the more-precise program uses a method

but the less-precise program uses a field whose initialization has already been evaluated.

Besides these nuances with records, there are a few other rules to take note of. First, there is the

rule relating a field access followed by a _-invocation to an untyped named-method invocation, and

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:54 Fabian Muehlboeck and Ross Tate

Heap Correspondence [::= ∅ | [, ℓ ⊑ ℓ | [, ⟨ℓ .𝑓 ⟩ ⊑ ℓ

ˇP ⊑ H ⊢ 𝐻 | 𝑒 ⊑ 𝐻 | 𝑒
ˇP ⊑ H ′ ⊢ 𝐻1;𝐻3;𝐻2;𝐻4 | 𝑒 ⊑ 𝐻 ′ | 𝑒 ′

ˇP ⊑ H ′ ⊢ 𝐻1;𝐻2;𝐻3;𝐻4 | 𝑒 ⊑ 𝐻 ′ | 𝑒 ′
ˇP ⊑ H ′ ⊢ 𝐻 | 𝑒 ⊑ 𝐻 ′

1
;𝐻 ′

3
;𝐻 ′

2
;𝐻 ′

4
| 𝑒 ′

ˇP ⊑ H ′ ⊢ 𝐻 | 𝑒 ⊑ 𝐻 ′
1
;𝐻 ′

2
;𝐻 ′

3
;𝐻 ′

4
| 𝑒 ′

ˇP ⊑ H ′ | [⊢ 𝐻 ⊑ 𝐻 ′
: [ˇP ⊑ H ′ | [⊢ 𝑒 ⊑ 𝐻 ′′ | 𝑒 ′

ˇP ⊑ H ′ ⊢ 𝐻 | 𝑒 ⊑ 𝐻 ′
;𝐻 ′′ | 𝑒 ′

ˇP ⊑ H | [⊢ 𝐻 ⊑ 𝐻 : [

ˇP ⊑ H ′ | [0 ⊢ 𝐻 ⊑ 𝐻 ′
: ∅

ˇP ⊑ H ′ | [0 ⊢ 𝐻1 ⊑ 𝐻 ′
1

: [1
ˇP ⊑ H ′ | [0 ⊢ 𝐻2 ⊑ 𝐻 ′

2
: [2

ˇP ⊑ H ′ | [0 ⊢ 𝐻1;𝐻2 ⊑ 𝐻 ′
1
;𝐻 ′

2
: [1, [2

∀𝑖 . [0 ⊢ 𝑣𝑥 ;𝑖 ⊑ 𝑣 ′𝑥 ;𝑖 ∀𝑖 . [0 ⊢ 𝑣 𝑓 ;𝑖 ⊑ 𝑣 ′
𝑓 ;𝑖

ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ 𝐶 (𝑣𝑥 ;1, . . .){𝑣 𝑓 ;1, . . .} ⊑ ℓ ′ ↦→ 𝐶 (𝑣 ′𝑥 ;1
, . . .){𝑣 ′

𝑓 ;1
, . . .} : ℓ ⊑ ℓ ′

𝐶 ≤ 𝐼1, . . . ∈ H ˇP 𝑥 : 𝐶 (𝑥1, . . .){𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . .} ∈ I ˇP
ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ {𝑓1 ↦→init 𝑣1; . . . | 𝑚1

ˇ𝑏1 [𝑥 ↦→ ℓ]; . . .}fix𝐼1,... ⊑ 𝐻 ′ | ℓ ′ ↦→ ℎ′
: [

ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ 𝐶 (𝑣𝑥 ;1, . . .){𝑣 𝑓 ;1, . . .} ⊑ 𝐻 ′
; ℓ ′ ↦→ ℎ′

: [, ℓ ⊑ ℓ ′

ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ {| _ ˇ𝑏}fix] ⊑ 𝐻 ′ | ℓ ′ ↦→ ℎ′
: [

ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ _] ˇ𝑏 ⊑ 𝐻 ′
; ℓ ′ ↦→ ℎ′

: [, ℓ ⊑ ℓ ′

ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . | 𝑚1

ˇ𝑏1; . . .}ext] ⊑ 𝐻 ′ | ℓ ′ ↦→ ℎ′
: [

ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . | 𝑚1

ˇ𝑏1; . . .}] ⊑ 𝐻 ′
; ℓ ′ ↦→ ℎ′

: [, ℓ ⊑ ℓ ′

ˇP ⊑ H | [⊢ ℓ ↦→ {𝑓 ↦→` 𝑒; . . . | 𝑚 ˇ𝑏; . . .}𝜒] ⊑ 𝐻 | ℓ ↦→ ℎ : [

ˇP ⊑ H ′ | [0 ⊢ ˇ𝑏 ⊑ 𝐻 ′ | ˇ𝑏 ′ ˇP ⊑ H ′ ⊢] ⊑] ′

ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ {| _ ˇ𝑏}fix] ⊑ 𝐻 ′ | ℓ ′ ↦→ _]′ ˇ𝑏 ′ : ∅
∀𝑖 . [0 ⊢ 𝑣𝑖 ⊑ 𝑣 ′𝑖

∀𝑖 . ˇP ⊑ H ′ | [0 ⊢ ˇ𝑏𝑖 ⊑ 𝐻 ′
𝑖 | ˇ𝑏 ′𝑖 ∀𝑖 . ˇP ⊑ H ′ | [0 ⊢ ℓ𝑚;𝑖 ↦→ {| _𝑏𝑚;𝑖 }fix∅ ⊑ ∅ | ℓ ′𝑚;𝑖 ↦→ ℎ′

𝑚;𝑖 : ∅
ˇP ⊑ H ′ ⊢] ⊑] ′ 𝐻 ′ = 𝐻 ′

1
; . . . ; ℓ ′𝑚;1

↦→ ℎ′
𝑚;1

; . . .

ˇP ⊑ H ′ | [0 ⊢
ℓ ↦→ {𝑓1 ↦→`1

𝑣1; . . . | 𝑚1

ˇ𝑏1; . . . ; 𝑓𝑚;1

ˇ𝑏𝑚;1; . . .}𝜒]
⊑

𝐻 ′ | ℓ ′ ↦→ {𝑓1 ↦→`1
𝑣 ′

1
; . . . ; 𝑓𝑚;1 ↦→init ℓ

′
𝑚;1

; . . . | 𝑚1

ˇ𝑏 ′
1
; . . .}]′

: ⟨ℓ .𝑓𝑚;1⟩ ⊑ ℓ ′𝑚;1
, . . .

ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . | 𝑚1

ˇ𝑏1; . . . ;𝑚′ ˇ𝑏 ′;𝑚 ˇ𝑏;𝑚′
1

ˇ𝑏 ′
1
; . . .}𝜒] ⊑ 𝐻 ′ | ℓ ′ ↦→ ℎ′

: [

ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . | 𝑚1

ˇ𝑏1; . . . ;𝑚 ˇ𝑏;𝑚′ ˇ𝑏 ′;𝑚′
1

ˇ𝑏 ′
1
; . . .}𝜒] ⊑ 𝐻 ′ | ℓ ′ ↦→ ℎ′

: [

ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . ; 𝑓 ′ ↦→`′ 𝑣

′
; 𝑓 ↦→` 𝑣 ; 𝑓 ′

1
↦→`′

1

𝑣 ′
1
; . . . | 𝑚1

ˇ𝑏1; . . .}𝜒] ⊑ 𝐻 ′ | ℓ ′ ↦→ ℎ′
: [

ˇP ⊑ H ′ | [0 ⊢ ℓ ↦→ {𝑓1 ↦→`1
𝑣1; . . . ; 𝑓 ↦→` 𝑣 ; 𝑓 ′ ↦→`′ 𝑣

′
; 𝑓 ′

1
↦→`′

1

𝑣 ′
1
; . . . | 𝑚1

ˇ𝑏1; . . .}𝜒] ⊑ 𝐻 ′ | ℓ ′ ↦→ ℎ′
: [

Fig. A.24. Heap Precision

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:55

[⊢ 𝑣 ⊑ 𝑣

[⊢ false ⊑ false [⊢ true ⊑ true

ℓ ⊑ ℓ ′ ∈ [

[⊢ ℓ ⊑ ℓ ′
ℓ ⊑ ℓ ′ ∈ [

[⊢ ⟨ℓ .𝑓 ⟩ ⊑ ⟨ℓ ′.𝑓 ⟩
⟨ℓ .𝑓 ⟩ ⊑ ℓ ′ ∈ [

[⊢ ⟨ℓ .𝑓 ⟩ ⊑ ℓ ′

ˇP ⊑ H | [⊢ 𝑒 ⊑ 𝐻 | 𝑒

ˇP ⊑ H ′ | [⊢ 𝑥 ⊑ ∅ | 𝑥
[⊢ 𝑣 ⊑ 𝑣 ′

ˇP ⊑ H ′ | [⊢ 𝑣 ⊑ ∅ | 𝑣 ′

∀𝑖 . ˇP ⊑ H ′ | [⊢ 𝑒𝑖 ⊑ 𝐻 ′
𝑖 | 𝑒 ′𝑖 ˇP ⊑ H ′ | [⊢ 𝑒 [𝑥1 ↦→ 𝑥 ′

1
, . . .] ⊑ 𝐻 ′ | 𝑒 ′

ˇP ⊑ H ′ | [⊢ let ⟨𝑥1, . . .⟩ := ⟨𝑒1, . . .⟩ in 𝑒 ⊑ 𝐻 ′
1
; . . . ;𝐻 ′ | let ⟨𝑥 ′

1
, . . .⟩ := ⟨𝑒 ′

1
, . . .⟩ in 𝑒 ′

ˇP ⊑ H ′ | [⊢ 𝑒1 ⊑ 𝐻 ′
1
| 𝑒 ′

1

ˇP ⊑ H ′ | [⊢ 𝑒2 ⊑ 𝐻 ′
2
| 𝑒 ′

2

ˇP ⊑ H ′ | [⊢ 𝑒1 == 𝑒2 ⊑ 𝐻 ′
1
;𝐻 ′

2
| 𝑒 ′

1
== 𝑒 ′

2

ˇP ⊑ H ′ | [⊢ 𝑒 ⊑ 𝐻 ′ | 𝑒 ′ ˇP ⊑ H ′ ⊢ 𝛿 ⊑ 𝛿 ′

ˇP ⊑ H ′ | [⊢ 𝑒.𝑓 𝛿 ⊑ 𝐻 ′ | 𝑒 ′.𝑓 𝛿′

ˇP ⊑ H ′ | [⊢ 𝑒 ⊑ 𝐻 ′ | 𝑒 ′ ˇP ⊑ H ′ ⊢ 𝛿 ⊑ 𝛿 ′ ˇP ⊑ H ′ | [⊢ 𝑒𝑓 ⊑ 𝐻 ′
𝑓
| 𝑒 ′

𝑓

ˇP ⊑ H ′ | [⊢ 𝑒.𝑓 𝛿 := 𝑒𝑓 ⊑ 𝐻 ′
;𝐻 ′

𝑓
| 𝑒 ′.𝑓 𝛿′ := 𝑒 ′

𝑓

ˇP ⊑ H ′ | [⊢ 𝑒 ⊑ 𝐻 ′ | 𝑒 ′ ∀𝑖 . ˇP ⊑ H ′ | [⊢ 𝑒𝑖 ⊑ 𝐻 ′
𝑖 | 𝑒 ′𝑖 ˇP ⊑ H ′ ⊢ 𝛿 ⊑ 𝛿 ′

ˇP ⊑ H ′ | [⊢ 𝑒.𝑚(𝑒1, . . .)𝛿 ⊑ 𝐻 ′
;𝐻 ′

1
; . . . | 𝑒 ′.𝑚(𝑒 ′

1
, . . .)𝛿′

∀𝑖 . ˇP ⊑ H ′ | [⊢ 𝑒𝑖 ⊑ 𝐻 ′
𝑖 | 𝑒 ′𝑖

ˇP ⊑ H ′ | [⊢ new 𝐶 (𝑒1, . . .) ⊑ 𝐻 ′
1
; . . . | new 𝐶 (𝑒 ′

1
, . . .)

ˇP ⊑ H ′ | [⊢ ˇ𝑏 ⊑ ˇ𝑏 ′ | 𝐻 ′
_

𝑥 is not free in
ˇ𝑏 ′ ⊢ 𝑥 := {| _ ˇ𝑏 ′} { 𝐻 ′ | 𝑒 ′ : 𝜒 ′

ˇP ⊑ H ′ | [⊢ new _⟨ ˇ𝑏⟩ ⊑ 𝐻 ′
_
;𝐻 ′ | 𝑒 ′

∀𝑖 . ˇP ⊑ H ′ | [⊢ 𝑒𝑖 ⊑ 𝐻 ′
𝑓 ;𝑖

| 𝑒 ′𝑖
∀𝑖 . ˇP ⊑ H ′ | [⊢ ˇ𝑏𝑖 ⊑ 𝐻 ′

𝑚;𝑖 | ˇ𝑏 ′𝑖 ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . .} { 𝐻 ′ | 𝑒 ′ : ext
ˇP ⊑ H ′ | [⊢ new 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . .} ⊑ 𝐻 ′
𝑓 ;1

; . . . ;𝐻 ′
𝑚;1

; . . . ;𝐻 ′ | 𝑒 ′

𝐶 (𝜏𝑥 ;1, . . .){𝑓1 : 𝜏𝑓 ;1; . . .} ∈ S ∀𝑖 . [⊢ 𝑣𝑖 ⊑ 𝑣 ′𝑖 ∀𝑖 . ˇP ⊑ H ′ | [⊢ 𝑒𝑖 ⊑ 𝐻 ′
𝑖 | 𝑒 ′𝑖

ˇP ⊑ H ′ | [⊢ 𝐶 (𝑣1, . . .){𝑒1, . . .} ⊑ 𝐻 ′
1
; . . . | 𝐶 (𝑣 ′

1
, . . .){𝑒 ′

1
, . . .}

H ′ ⊢ 𝜏 ′ ⊢ 𝛾 ⊑ 𝛾 ′ ˇP ⊑ H ′ | [⊢ 𝑒 ⊑ 𝐻 ′ | 𝑒 ′ H ˇP ⊢ 𝜏 ◀ 𝜏 ′

ˇP ⊑ H ′ | [⊢ cast𝛾 𝑒 to 𝜏 ⊑ 𝐻 ′ | cast𝛾 ′ 𝑒 ′ to 𝜏 ′

⊢ 𝛾 ⊑ 𝛾 ′ [⊢ ℓ ⊑ ℓ ′ ˇP ⊑ H ′ | [⊢ 𝑒 ⊑ 𝐻 ′ | 𝑒 ′

ˇP ⊑ H ′ | [⊢ impose𝛾 ℓ .𝑚 on 𝑒 ⊑ 𝐻 ′ | impose𝛾 ′ ℓ ′.𝑚 on 𝑒 ′

Fig. A.25. Lowered-Expression Precision (Part I)

similarly there is the rule related a named method invocation to an untyped field access followed

by an untyped _-invocation. Second, there is the rule relating impose to a trivial cast so that the

result of reducing typed invocations correlates with the result of reducing untyped invocations.

Third, the final rule arises from supporting dynamic subsumption, where the unnecessary bind and

cast to a nominal supertype can be disregarded.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:56 Fabian Muehlboeck and Ross Tate

ˇP ⊑ H ′ | [⊢ 𝑒 ⊑ 𝐻 ′ | 𝑒 ′ ∀𝑖 . ˇP ⊑ H ′ | [⊢ 𝑒𝑖 ⊑ 𝐻 ′
𝑖 | 𝑒 ′𝑖

ˇP ⊑ H ′ | [⊢ 𝑒.𝑓 𝛿𝑓 ._(𝑒1, . . .)𝛿_ ⊑ 𝐻 ′
;𝐻 ′

1
; . . . | 𝑒 ′.𝑓 (𝑒 ′

1
, . . .) ⟨dyn⟩

ˇP ⊑ H ′ | [⊢ 𝑒 ⊑ 𝐻 ′ | 𝑒 ′ ∀𝑖 . ˇP ⊑ H ′ | [⊢ 𝑒𝑖 ⊑ 𝐻 ′
𝑖 | 𝑒 ′𝑖

ˇP ⊑ H ′ | [⊢ 𝑒.𝑓 (𝑒1, . . .)𝛿 ⊑ 𝐻 ′
;𝐻 ′

1
; . . . | 𝑒 ′.𝑓 ⟨dyn⟩ ._(𝑒 ′

1
, . . .) ⟨dyn⟩

¬ H ′ ⊢ 𝐶 ∀𝑖 . ˇP ⊑ H ′ | [⊢ 𝑒𝑖 ⊑ 𝐻 ′
𝑖 | 𝑒 ′𝑖

𝑥 : 𝐶 (𝑥1, . . .){𝑓1 := 𝑒𝑓 ;1; . . . | 𝑚1

ˇ𝑏1; . . .} ∈ ˇI ˇP ∀𝑖 . ˇP ⊑ H ′ | [⊢ 𝑒𝑓 ;𝑖 [𝑥1 ↦→ 𝑥 ′
1
, . . .] ⊑ 𝐻 ′

𝑓 ;𝑖
| 𝑒 ′

𝑓 ;𝑖

∀𝑖 . ˇP ⊑ H ′ | [⊢ ˇ𝑏𝑖 [𝑥1 ↦→ 𝑥 ′
1
, . . .] ⊑ 𝐻 ′

𝑚;𝑖 | ˇ𝑏 ′𝑖 ⊢ 𝑥 := {𝑓1 := 𝑒 ′
𝑓 ;1

; . . . | 𝑚1

ˇ𝑏 ′
1
; . . .} { 𝐻 ′ | 𝑒 ′ : 𝜒

ˇP ⊑ H ′ | [⊢ new 𝐶 (𝑒1, . . .) ⊑ 𝐻 ′
1
; . . . ;𝐻 ′

𝑓 ;1
; . . . ;𝐻 ′

𝑚;1
; . . . ;𝐻 ′ | let ⟨𝑥 ′

1
, . . .⟩ := ⟨𝑒 ′

1
, . . .⟩ in 𝑒 ′

¬ H ′ ⊢ 𝐶 ∀𝑖 . [⊢ 𝑣𝑖 ⊑ 𝑣 ′𝑖
𝑥 : 𝐶 (𝑥1, . . .){𝑓1 := 𝑒𝑓 ;1; . . . | 𝑚1

ˇ𝑏1; . . .} ∈ ˇI ˇP ∀𝑖 . ˇP ⊑ H ′ | [⊢ 𝑒𝑖 ⊑ 𝐻 ′
𝑓 ;𝑖

| 𝑒 ′𝑖
∀𝑖 . ˇP ⊑ H ′ | [⊢ ˇ𝑏𝑖 [𝑥1 ↦→ 𝑣1, . . .] ⊑ 𝐻 ′

𝑚;𝑖 | ˇ𝑏 ′𝑖 ⊢ 𝑥 := {𝑓1 := 𝑒 ′
𝑓 ;1

; . . . | 𝑚1

ˇ𝑏 ′
1
; . . .} { 𝐻 ′ | 𝑒 ′ : 𝜒

ˇP ⊑ H ′ | [⊢ 𝐶 (𝑣1, . . .){𝑒1, . . .} ⊑ 𝐻 ′
𝑓 ;1

; . . . ;𝐻 ′
𝑚;1

; . . . ;𝐻 ′ | 𝑒 ′

[⊢ ℓ ⊑ ℓ ′ ˇP ⊑ H ′ | [⊢ 𝑒 ⊑ 𝐻 ′ | 𝑒 ′

ˇP ⊑ H ′ | [⊢ impose𝛾 ℓ .𝑚 on 𝑒 ⊑ 𝐻 ′ | cast𝛾 ′ 𝑒 ′ to dyn
H ′ ⊢ 𝜏 ′ ⊢ 𝛾 ⊑ 𝛾 ′ H ˇP ⊢ 𝜏 ◀ 𝜏 ′

H ˇP ⊢ 𝜏 ◀ 𝜏𝑥 ˇP ⊑ H ′ | [⊢ 𝑒𝑥 ⊑ 𝐻 ′
𝑥 | 𝑒 ′𝑥 ˇP ⊑ H ′ | [⊢ 𝑒 [𝑥 ↦→ 𝑥 ′] ⊑ 𝐻 ′ | 𝑒 ′

let ⟨𝑥𝑥 ⟩ := ⟨cast𝛾 𝑒𝑥 to 𝜏⟩ in let ⟨𝑥⟩ := ⟨cast𝛾𝑥 𝑥𝑥 to 𝜏𝑥 ⟩ in 𝑒
ˇP ⊑ H ′ | [⊢ ⊑

𝐻 ′
𝑥 ;𝐻 ′ | let ⟨𝑥 ′⟩ := ⟨cast𝛾 ′ 𝑒 ′𝑥 to 𝜏 ′⟩ in 𝑒 ′

⊢ 𝑥 := {𝑓 := 𝑒; . . . | 𝑚 ˇ𝑏; . . .} { 𝐻 | 𝑒 : 𝜒

𝑥 is not free in
ˇ𝑏

⊢ 𝑥 := {| _ ˇ𝑏} { ∅ | new _⟨ ˇ𝑏⟩ : fix

⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . .} { ∅ | new 𝑥 ′
:= {𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1 [𝑥 ↦→ 𝑥 ′]; . . .} : ext

⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . .} { 𝐻 | 𝑒 : ext

⊢ 𝑥 := {𝑓1 := 𝑒1; . . . ; 𝑓 := 𝑒𝑓 | 𝑚1

ˇ𝑏1; . . .} { 𝐻 | 𝑒.𝑓 ⟨dyn⟩
:= 𝑒𝑓 : ext

𝑥 is not free in
ˇ𝑏

⊢ 𝑥 := {| _ ˇ𝑏} { 𝐻𝑓 | 𝑒𝑓 : 𝜒𝑓 ⊢ 𝑥 := {𝑓1 := 𝑒1; . . . ; 𝑓 := 𝑒𝑓 | 𝑚1

ˇ𝑏1; . . .} { 𝐻 | 𝑒 : 𝜒

⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . . ; 𝑓 ˇ𝑏} { 𝐻𝑓 ;𝐻 | 𝑒 : 𝜒

⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . . ;𝑚′ ˇ𝑏 ′;𝑚 ˇ𝑏;𝑚′
1

ˇ𝑏 ′
1
; . . .} { 𝐻 | 𝑒 : 𝜒

⊢ 𝑥 := {𝑓1 := 𝑒1; . . . | 𝑚1

ˇ𝑏1; . . . ;𝑚 ˇ𝑏;𝑚′ ˇ𝑏 ′;𝑚′
1

ˇ𝑏 ′
1
; . . .} { 𝐻 | 𝑒 : 𝜒

𝑥 is not free in
ˇ𝑏

⊢ 𝑥 := {| _ ˇ𝑏} { ℓ ↦→ _∅ ˇ𝑏 | ℓ : fix

⊢ 𝑥 := {𝑓1 := 𝑣1; . . . | 𝑚1

ˇ𝑏1; . . .} { ℓ ↦→ {𝑓1 ↦→init 𝑣1; . . . | 𝑚1

ˇ𝑏1 [𝑥 ↦→ ℓ]; . . .}∅ | ℓ : ext

Fig. A.25. Lowered-Expression Precision (Part II)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:57

ˇP ⊑ H | [⊢ ˇ𝑏 ⊑ 𝐻 | ˇ𝑏 ∀𝑖 . H ′ ⊢ 𝜏 ′𝑖
H ′ ⊢ 𝜏 ′ ∀𝑖 . ⊢ 𝜏𝑖 ⊑ 𝜏 ′𝑖 ˇP ⊑ H ′ | [⊢ 𝑒 [𝑥1 ↦→ 𝑥 ′

1
, . . .] ⊑ 𝐻 ′ | 𝑒 ′ ⊢ 𝜏 ⊑ 𝜏 ′

ˇP ⊑ H ′ | [⊢ (𝑥1 : 𝜏1, . . .) ↦→ 𝑒 : 𝜏 ⊑ 𝐻 ′ | (𝑥 ′
1

: 𝜏 ′
1
, . . .) ↦→ 𝑒 ′ : 𝜏 ′

ˇP ⊑ H ⊢ 𝛿 ⊑ 𝛿 H ˇP ⊑ H ′ ⊢ 𝜏 :> 𝜏 ′

ˇP ⊑ H ′ ⊢ ⟨𝜏⟩ ⊑ ⟨𝜏 ′⟩
ˇP ⊑ H ⊢] ⊑]

ˇP ⊑ H ′ ⊢] ⊑ ∅
H ′ ⊢ 𝐼 ′ ˇP ⊑ H ′ ⊢ 𝐼1, . . . ⊑] ′ H ˇP ⊢ 𝐼𝑖 ≤ 𝐼 ′

ˇP ⊑ H ′ ⊢ 𝐼1, . . . ⊑] ′, 𝐼 ′

⊢ 𝛾 ⊑ 𝛾 ⊢ 𝛾 ⊑ 𝛾 ⊢ 𝛾 ⊑ dyn

Fig. A.25. Lowered-Expression Precision (Part III)

A.9.4 The Dynamic Gradual Guarantee. We repeat the statement of the dynamic gradual guarantee

MonNom ensures, this time with proof.

Theorem 5.3 (Dynamic Gradual Guarantee). For all programs satisfying ⊢ P, ⊢ P ′, and
⊢ P ⊑ P ′, any observation satisfying ⊢ P ↠ 𝑜 either also satisfies ⊢ P ′ ↠ 𝑜 or is error; and for any
observation satisfying ⊢ P ′ ↠ 𝑜 , either ⊢ P ↠ 𝑜 also holds or ⊢ P ↠ error holds.

Proof. By the following Lemma A.6, the two programs necessarily lower to related lowered

programs. Furthermore, by the previous Lemma A.3, these lowered programs are necessarily typed,

and so by Lemma A.5 the err if and only if they get stuck.

By the following Lemma A.7, if the main expression of the more-precise program steps then,

after possibly a few more steps, so does the main expression of the less-precise program, eventually

reaching a state where the two are related again. Thus if the more-precise program reduces to a

value or steps forever, then the less-precise program must likewise reduce to the same value or step

forever. But if the more-precise program gets stuck, although it necessarily errs, the less-precise

program might still continue to reduce.

On the other side, by the following Lemma A.8, if the main expression of the less-precise program

steps then, after possibly a fewmore steps, so does the main expression of the more-precise program,

eventually reaching a state where the two are related again—unless it gets stuck. Thus if the less-

precise program reduces to a value or steps forever, then the more-precise program must likewise

reduce to the same value or step forever—unless it gets stuck, i.e. errs. □

Lemma A.6. All programs and lowered programs satisfying ⊢ P ⊑ P ′, ⊢ P { ˇP, and ⊢ P ′ { ˇP ′

furthermore satisfy ⊢ ˇP ⊑ ˇP ′.

Proof. One can easily prove the corresponding lemma for lowering related expressions by

induction on the proof of expression precision. The proof for lowering related programs is a

straightforward corollary of that lemma. □

The following lemmas make use of the judgements defined in Figure A.26. The issue is that

more-precise and less-precise expressions do not reduce in lock-step. For example, when one uses a

named method invocation where the other uses a field access followed by a _-invocation, the former

takes one step where the latter takes two. Figure A.26 defines judgements to express that two

related states will always eventually synchronize again. The first judgement simply steps a state one

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:58 Fabian Muehlboeck and Ross Tate

ˇP ⊢ 𝐻 | 𝑒 +−→ 𝐻 | 𝑒

ˇP ⊢ 𝐻 | 𝑒 → 𝐻 ′ | 𝑒 ′

ˇP ⊢ 𝐻 | 𝑒 +−→ 𝐻 ′ | 𝑒 ′
ˇP ⊢ 𝐻 | 𝑒 → 𝐻 ′ | 𝑒 ′ ˇP ⊢ 𝐻 ′ | 𝑒 ′ +−→ 𝐻 ′′ | 𝑒 ′′

ˇP ⊢ 𝐻 | 𝑒 +−→ 𝐻 ′′ | 𝑒 ′′

ˇP ⊑ ˇP ⊢ 𝐻 | 𝑒 ∗−→ • ⊑ 𝐻 | 𝑒

ˇP ′ ⊢ 𝐻 ′ | 𝑒 ′ +−→ 𝐻 ′
2
| 𝑒 ′

2

ˇP ⊑ H ˇP′ ⊢ 𝐻 | 𝑒 ⊑ 𝐻 ′
2
| 𝑒 ′

2

ˇP ⊑ ˇP ′ ⊢ 𝐻 | 𝑒 ∗−→ • ⊑ 𝐻 ′ | 𝑒 ′

∃𝐻2, 𝑒2. ˇP ⊢ 𝐻 | 𝑒 → 𝐻2 | 𝑒2

∀𝐻2, 𝑒2. ˇP ⊢ 𝐻 | 𝑒 → 𝐻2 | 𝑒2 =⇒ ˇP ⊑ ˇP ′ ⊢ 𝐻2 | 𝑒2

∗−→ • ⊑ 𝐻 ′ | 𝑒 ′

ˇP ⊑ ˇP ′ ⊢ 𝐻 | 𝑒 ∗−→ • ⊑ 𝐻 ′ | 𝑒 ′

ˇP ⊑ ˇP ⊢ 𝐻 | 𝑒 ∗−→ 𝐻 | 𝑒 ⊑ •

ˇP ⊢ 𝐻 | 𝑒 +−→ 𝐻2 | 𝑒2
ˇP ⊑ H ˇP′ ⊢ 𝐻2 | 𝑒2 ⊑ 𝐻 ′ | 𝑒 ′

ˇP ⊑ ˇP ′ ⊢ 𝐻 ′ | 𝑒 ′ ∗−→ 𝐻 | 𝑒 ⊑ •

∃𝐻 ′
2
, 𝑒 ′

2
. ˇP ′ ⊢ 𝐻 ′ | 𝑒 ′ → 𝐻 ′

2
| 𝑒 ′

2

∀𝐻 ′
2
, 𝑒 ′

2
. ˇP ′ ⊢ 𝐻 ′ | 𝑒 ′ → 𝐻 ′

2
| 𝑒 ′

2
=⇒ ˇP ⊑ ˇP ′ ⊢ 𝐻 ′

2
| 𝑒 ′

2

∗−→ 𝐻 | 𝑒 ⊑ •
ˇP ⊑ ˇP ′ ⊢ 𝐻 ′ | 𝑒 ′ ∗−→ 𝐻 | 𝑒 ⊑ •

ˇP ⊢ 𝐻 | 𝑒 ∗−→ ∅

�𝑣 . 𝑒 = 𝑣 ∀𝐻2, 𝑒2 . ˇP ⊢ 𝐻 | 𝑒 → 𝐻2 | 𝑒2 =⇒ ˇP ⊢ 𝐻2 | 𝑒2

∗−→ ∅
ˇP ⊢ 𝐻 | 𝑒 ∗−→ ∅

Fig. A.26. Eventual Refinement

or more times. The second judgement, Always-Eventually Refines, steps the state until it is in a state

that is recognized as more precise than a state reachable by the less-precise state in one or more

steps. The third judgement, Always-Eventually Relaxes, does the same with the precision relation

essentially flipped. Finally, the last judgement, Always-Eventually Sticks, describes states that will
always eventually get stuck. Each of these judgements is inductive (rather than coinductive), which

avoids the possibility of one program diverging without the other ever matching up or getting

stuck.

Lemma A.7. For all lowered programs, heaps, heap correspondences, and lowered expressions satis-
fying ⊢ ˇP, ⊢ ˇP ′, and ˇP ⊑ H ˇP′ ⊢ 𝐻1 | 𝑒1 ⊑ 𝐻 ′

1
| 𝑒 ′

2
, the following implication holds:

∀𝐻2, 𝑒2. ˇP ⊢ 𝐻1 | 𝑒1 → 𝐻2 | 𝑒2 =⇒ ˇP ⊑ ˇP ′ ⊢ 𝐻2 | 𝑒2

∗−→ • ⊑ 𝐻 ′
1
| 𝑒 ′

1

Proof. One can do induction on the proof of
ˇP ⊑ H ˇP′ ⊢ 𝐻1 | 𝑒1 ⊑ 𝐻 ′

1
| 𝑒 ′

2
to extract proofs

ˇP ⊑ H ˇP′ | [⊢ 𝐻∝ ⊑ 𝐻 ′
ℓ : [and

ˇP ⊑ H ˇP′ | [⊢ 𝑒1 ⊑ 𝐻 ′
𝑟 | 𝑒 ′

1
, where 𝐻∝ is a reordering of 𝐻1, and

𝐻 ′
ℓ ;𝐻

′
𝑟 is a reordering of 𝐻 ′

1
. Then, by induction on the proof of

ˇP ⊑ H ˇP′ | [⊢ 𝑒1 ⊑ 𝐻 ′
𝑟 | 𝑒 ′

1
, it is

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:59

relatively easy to prove—despite the number of cases involved—that a reduction step of 𝑒1 always

eventually leads to a refinement of some multi-step reduction of 𝑒 ′
1
. □

Lemma A.8. For all lowered programs, heaps, heap correspondences, and lowered expressions satis-
fying ⊢ ˇP, ⊢ ˇP ′, and ˇP ⊑ H ˇP′ ⊢ 𝐻1 | 𝑒1 ⊑ 𝐻 ′

1
| 𝑒 ′

2
, the following implication holds:

∀𝐻 ′
2
, 𝑒 ′

2
. ˇP ′ ⊢ 𝐻 ′

1
| 𝑒 ′

1
→ 𝐻 ′

2
| 𝑒 ′

2
=⇒ ˇP ⊑ ˇP ′ ⊢ 𝐻 ′

2
| 𝑒 ′

2

∗−→ 𝐻1 | 𝑒1 ⊑ • ∨ ˇP ⊢ 𝐻1 | 𝑒1

∗−→ ∅

Proof. One can do induction on the proof of
ˇP ⊑ H ˇP′ ⊢ 𝐻1 | 𝑒1 ⊑ 𝐻 ′

1
| 𝑒 ′

2
to extract proofs

ˇP ⊑ H ˇP′ | [⊢ 𝐻∝ ⊑ 𝐻 ′
ℓ : [and

ˇP ⊑ H ˇP′ | [⊢ 𝑒1 ⊑ 𝐻 ′
𝑟 | 𝑒 ′

1
, where 𝐻∝ is a reordering of 𝐻1,

and 𝐻 ′
ℓ ;𝐻

′
𝑟 is a reordering of 𝐻 ′

1
. Then, by induction on the proof of

ˇP ⊑ H ˇP′ | [⊢ 𝑒1 ⊑ 𝐻 ′
𝑟 | 𝑒 ′

1
,

it is relatively easy to prove—despite the number of cases involved—that a reduction step of 𝑒 ′
1

either always eventually leads to a relaxation of some multi-step reduction of 𝑒1 unless 𝑒1 always

eventually gets stuck. □

A.9.5 Determinism. Lastly, we prove that our calculus is deterministic.

Theorem 5.1 (Determinism). For all programs satisfying ⊢ P, any two observations satisfying
⊢ P ↠ 𝑜 and ⊢ P ↠ 𝑜 ′ are necessarily equal.

Proof. Because program precision is reflexive, a consequence of Lemma A.6 is that all lowerings

of a program are refinements of each other. By Lemma A.8, that in turn implies all lowerings of a

program are semantically equivalent. For the general purposes of gradual typing, that is enough.

But to simplify the presentation of our calculus and results in the main body of the paper, we made

a stronger claim: that the semantics of MonNom was deterministic. So, in addition to the above

reasoning, we need the following Lemma A.9, from which remainder of the proof easily follows. □

Lemma A.9. All lowered programs, heaps, and lowered expressions satisfying ˇP ⊢ 𝐻1 | 𝑒1 → 𝐻2 | 𝑒2

and ˇP ⊢ 𝐻1 | 𝑒1 → 𝐻 ′
2
| 𝑒 ′

2
furthermore satisfy ˇP ⊑ 𝐻2 ⊢ 𝑒2 | 𝐻 ′

2
⊑ 𝑒 ′

2
|.

Proof. This is a straightforward proof by case. □

B BENCHMARK SOURCE CODE
This appendix contains the full source listings of the benchmarks for files that are not considered

standard library material and are actively varied by our benchmark generator.

B.1 sieve

Listing 1. Main.mn—Fully Untyped

class Main {

public static fun CountFrom(dyn n) : dyn {

dyn rest = () => {

dyn next = n + 1;

return Main.CountFrom(next);

} : dyn;

return new(dyn First = n, dyn Rest = rest) { };

}

public static fun Sift(dyn n, dyn s) : dyn {

dyn first = s.First;

if (first % n == 0) {

return Main.Sift(n, let dyn fn = s.Rest in fn());

} else {

dyn rest = () => {

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:60 Fabian Muehlboeck and Ross Tate

return Main.Sift(n, let dyn fn = s.Rest in fn());

} : dyn;

return new(dyn First = first, dyn Rest = rest) { };

}

}

public static fun Sieve(dyn s) : dyn {

dyn first = s.First;

dyn rest = () => {

return Main.Sieve(Main.Sift(first, let dyn fn = s.Rest in fn()));

} : dyn;

return new(dyn First = first, dyn Rest = rest) { };

}

public static fun GetPrimes() : dyn {

return Main.Sieve(Main.CountFrom(2));

}

public static fun Main() : dyn {

dyn timer = new Timer();

dyn prime = Stream.Get(Main.GetPrimes(), 9999);

timer.PrintDifference();

"\n".Print();

prime.ToString().Print();

"\n".Print();

}

}

Listing 2. Streams.mn—Fully Untyped

class Stream {

public static fun Get(dyn s, dyn n) : dyn {

while (n > 0) {

n = n - 1;

s = s.Rest();

}

return s.First;

}

}

Listing 3. Main.mn—Fully Typed

interface IFun<T> {

public fun this() : T;

}

class CountFromFun implements IFun<Stream> {

private readonly Int N;

public constructor(Int n) {

N = n;

super();

}

public fun this() : Stream {

Int next = N + 1;

return Main.CountFrom(next);

}

}

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:61

class SiftFun implements IFun<Stream> {

private readonly Int N;

private readonly Stream S;

public constructor(Int n, Stream s) {

N = n;

S = s;

super();

}

public fun this() : Stream {

return Main.Sift(N, let IFun<Stream> fn = S.Rest in fn());

}

}

class SieveFun implements IFun<Stream> {

private readonly Int N;

private readonly Stream S;

public constructor(Int n, Stream s) {

N = n;

S = s;

super();

}

public fun this() : Stream {

return Main.Sieve(Main.Sift(N, let IFun<Stream> fn = S.Rest in fn()));

}

}

class Main {

public static fun CountFrom(Int n) : Stream {

return new Stream(n, new CountFromFun(n));

}

public static fun Sift(Int n, Stream s) : Stream {

Int first = s.First;

if (first % n == 0) {

return Main.Sift(n, let IFun<Stream> fn = s.Rest in fn());

} else {

return new Stream(first, new SiftFun(n, s));

}

}

public static fun Sieve(Stream s) : Stream {

Int first = s.First;

return new Stream(first, new SieveFun(first, s));

}

public static fun GetPrimes() : Stream {

return Main.Sieve(Main.CountFrom(2));

}

public static fun Main() : Void {

Timer timer = new Timer();

Int prime = Stream.Get(Main.GetPrimes(), 9999);

timer.PrintDifference();

"\n".Print();

prime.ToString().Print();

"\n".Print();

}

}

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:62 Fabian Muehlboeck and Ross Tate

Listing 4. Streams.mn—Fully Typed

class Stream {

public readonly Int First;

public readonly IFun<Stream> Rest;

public constructor(Int first, IFun<Stream> rest) {

First = first;

Rest = rest;

super();

}

public static fun Get(Stream s, Int n) : Int {

while (n > 0) {

n = n - 1;

s = s.Rest();

}

return s.First;

}

}

B.2 intersort

Listing 5. Sort.mn—Fully Untyped

class Sort {

public static fun Quicksort(dyn list) : dyn {

dyn loIter = list.GetIterator();

dyn hiIter = list.GetIterator();

if (loIter.MoveNext()) {

hiIter.MoveNext();

dyn lo = 0;

dyn hi = 0;

while (hiIter.MoveNext()) {

hi = hi + 1;

}

QuicksortRec(loIter, hiIter, lo, hi);

}

}

private static fun QuicksortRec(dyn loIter, dyn hiIter, dyn lo, dyn hi) : dyn {

if (lo < hi) {

dyn upper = hiIter.Clone();

dyn lower = loIter.Clone();

dyn losize = Partition(lower, upper, hi - lo);

QuicksortRec(loIter, upper, lo, lo + losize - 1);

QuicksortRec(lower, hiIter, lo + losize, hi);

}

}

private static fun Partition(dyn loIter, dyn hiIter, dyn distance) : dyn {

dyn pivot = loIter.Current();

dyn losize = 0;

while (true) {

while (loIter.Current() < pivot) {

loIter.MoveNext();

distance = distance - 1;

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:63

losize = losize + 1;

}

while (hiIter.Current() > pivot) {

hiIter.MovePrev();

distance = distance - 1;

}

if (distance < 0) {

break 0;

}

dyn buffer = loIter.Current();

loIter.SetValue(hiIter.Current());

hiIter.SetValue(buffer);

loIter.MoveNext();

losize = losize + 1;

hiIter.MovePrev();

distance = distance - 2;

}

return losize;

}

}

Listing 6. Main.mn—Fully Untyped

class Main {

public static fun Main() : dyn {

dyn intlist = MakeIntList();

Main.Test(intlist);

dyn ilistIter = intlist.GetIterator();

ilistIter.MoveNext();

dyn last = ilistIter.Current();

while (ilistIter.MoveNext()) {

if (ilistIter.Current() < last) {

ERROR("sorting␣failed");

}

last = ilistIter.Current();

}

}

public static fun Test(dyn list) : dyn {

dyn timer = new Timer();

Sort.Quicksort(list);

timer.PrintDifference();

}

public static fun MakeIntList() : dyn {

dyn head = new(dyn value = 5, dyn next = this, dyn prev = this) {};

dyn list = new(dyn first = head, dyn Size = 1) {

public fun Add(dyn val) : dyn {

dyn newNode = new(dyn value = val, dyn next = this, dyn prev = this) {};

newNode.prev = this.first.prev;

newNode.next = this.first;

this.first.prev = newNode;

newNode.prev.next = newNode;

this.Size = this.Size + 1;

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:64 Fabian Muehlboeck and Ross Tate

}

public fun GetIterator() : dyn {

dyn iter = this.MakeIterator(this.first);

return iter;

}

public fun GetSize() : dyn {

return this.Size;

}

public fun MakeIterator(dyn node) : dyn {

dyn self = this;

return new(dyn currentNode = node, dyn parent = self) {

public fun MovePrev() : dyn {

if (this.currentNode == parent.first) {

return false;

}

this.currentNode = this.currentNode.prev;

return true;

}

public fun MoveNext() : dyn {

if (this.currentNode.next == this.parent.first) {

return false;

}

this.currentNode = this.currentNode.next;

return true;

}

public fun Current() : dyn {

return this.currentNode.value;

}

public fun SetValue(dyn val) : dyn {

this.currentNode.value = val;

}

public fun Clone() : dyn {

return this.parent.MakeIterator(this.currentNode);

}

};

}

};

dyn i = 0;

while (i < 100000) {

dyn num = (i * 163841 + 176081) % 122251;

list.Add(num);

i = i + 1;

}

return list;

}

}

Listing 7. List.mn—Fully Typed

interface IIterator<T> {

public fun Current() : T;

public fun Clone() : IIterator<T>;

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:65

public fun MoveNext() : Bool;

public fun MovePrev() : Bool;

public fun SetValue(T val) : Void;

}

interface IList<T> {

public fun GetIterator() : IIterator<T>;

public fun GetSize() : Int;

public fun Add(T val) : Void;

}

Listing 8. Sort.mn—Fully Typed

class Sort {

public static fun Quicksort(IList<Int> list) : Void {

IIterator<Int> loIter = list.GetIterator();

IIterator<Int> hiIter = list.GetIterator();

if (loIter.MoveNext()) {

hiIter.MoveNext();

Int lo = 0;

Int hi = 0;

while (hiIter.MoveNext()) {

hi = hi + 1;

}

QuicksortRec(loIter, hiIter, lo, hi);

}

}

private static fun QuicksortRec(IIterator<Int> loIter, IIterator<Int> hiIter, Int lo, Int hi)

: Void {

if (lo < hi) {

IIterator<Int> upper = hiIter.Clone();

IIterator<Int> lower = loIter.Clone();

Int losize = Partition(lower, upper, hi - lo);

QuicksortRec(loIter, upper, lo, lo + losize - 1);

QuicksortRec(lower, hiIter, lo + losize, hi);

}

}

private static fun Partition(IIterator<Int> loIter, IIterator<Int> hiIter, Int distance) :

Int {

Int pivot = loIter.Current();

Int losize = 0;

while (true) {

while (loIter.Current() < pivot) {

loIter.MoveNext();

distance = distance - 1;

losize = losize + 1;

}

while (hiIter.Current() > pivot) {

hiIter.MovePrev();

distance = distance - 1;

}

if (distance < 0) {

break 0;

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:66 Fabian Muehlboeck and Ross Tate

}

Int buffer = loIter.Current();

loIter.SetValue(hiIter.Current());

hiIter.SetValue(buffer);

loIter.MoveNext();

losize = losize + 1;

hiIter.MovePrev();

distance = distance - 2;

}

return losize;

}

}

Listing 9. ListImpl.mn—Fully Typed

class List<T> implements IList<T> {

private ListNode first;

private Int Size;

public constructor(T val) {

Size = 1;

first = new ListNode(val);

super();

}

public fun Add(T val) : Void {

ListNode newNode = new ListNode(val);

newNode.prev = this.first.prev;

newNode.next = this.first;

this.first.prev = newNode;

newNode.prev.next = newNode;

this.Size = this.Size + 1;

}

public fun GetIterator() : IIterator<T> {

IIterator<T> iter = this.MakeIterator(this.first);

return iter;

}

public fun GetSize() : Int {

return this.Size;

}

class ListNode {

public constructor(T val) {

value = val;

next = this;

prev = this;

super();

}

public T value;

public ListNode next;

public ListNode prev;

}

public fun MakeIterator(List<T>. ListNode node) : IIterator<T> {

List<T> self = this;

return new IteratorImpl(self, node);

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:67

}

class IteratorImpl implements IIterator<T> {

private ListNode currentNode;

private List<T> parent;

public constructor(List<T> list, ListNode node) {

currentNode = node;

parent = list;

super();

}

public fun MovePrev() : Bool {

if (this.currentNode == parent.first) {

return false;

}

this.currentNode = this.currentNode.prev;

return true;

}

public fun MoveNext() : Bool {

if (this.currentNode.next == this.parent.first) {

return false;

}

this.currentNode = this.currentNode.next;

return true;

}

public fun Current() : T {

return this.currentNode.value;

}

public fun SetValue(T val) : Void {

this.currentNode.value = val;

}

public fun Clone() : IIterator<T> {

return this.parent.MakeIterator(this.currentNode);

}

}

}

Listing 10. Main.mn—Fully Typed

class Main {

public static fun Main() : Void {

IList<Int> intlist = MakeIntList();

Main.Test(intlist);

IIterator<Int> ilistIter = intlist.GetIterator();

ilistIter.MoveNext();

Int last = ilistIter.Current();

while (ilistIter.MoveNext()) {

if (ilistIter.Current() < last) {

ERROR("sorting␣failed");

}

last = ilistIter.Current();

}

}

public static fun Test(IList<Int> list) : Void {

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:68 Fabian Muehlboeck and Ross Tate

Timer timer = new Timer();

Sort.Quicksort(list);

timer.PrintDifference();

}

public static fun MakeIntList() : IList<Int> {

IList<Int> list = new List<Int>(5);

Int i = 0;

while (i < 100000) {

Int num = (i * 163841 + 176081) % 122251;

list.Add(num);

i = i + 1;

}

return list;

}

}

B.3 float

Listing 11. Float.mn—Fully Untyped

class Main {

public static fun Maximize(dyn points) : dyn {

dyn next = points.Get(0);

foreach (dyn point in Enumerable.From<dyn>(points, 1)) {

next = next.Maximize(point);

}

return next;

}

public static fun Benchmark(dyn n) : dyn {

dyn points = Enumerable.ToList<dyn>(Enumerable.Map<Int, dyn>([0..n:1], (dyn i) => {

dyn f = i + 0.0;

dyn s = Math.Sin(f);

return new(dyn x = s, dyn y = Math.Cos(f) * 3, dyn z = (s * s) / 2) {

public fun Normalize() : dyn {

dyn norm = Math.Sqrt(x * x + y * y + z * z);

x = x / norm;

y = y / norm;

z = z / norm;

}

public fun Maximize(dyn other) : dyn {

if (x < other.x) {

x = other.x;

}

if (y < other.y) {

y = other.y;

}

if (z < other.z) {

z = other.z;

}

return this;

}

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

Transitioning from Structural to Nominal Code with Efficient Gradual Typing 127:69

public fun Print() : dyn {

"<".Print();

x.ToString().Print();

",␣".Print();

y.ToString().Print();

",␣".Print();

z.ToString().Print();

">␣".Print();

}

};

} : dyn));

foreach (dyn point in points) {

point.Normalize();

}

return Maximize(points);

}

public static fun Main() : dyn {

dyn timer = new Timer();

dyn result = Benchmark(100000);

timer.PrintDifference();

"\n".Print();

result.Print();

}

}

Listing 12. Float.mn—Fully Typed

class Point {

public Float x;

public Float y;

public Float z;

public constructor(Float f) {

Float s = Math.Sin(f);

x = s;

y = Math.Cos(f) * 3;

z = (s * s) / 2;

super();

}

public fun Normalize() : Void {

Float norm = Math.Sqrt(x * x + y * y + z * z);

x = x / norm;

y = y / norm;

z = z / norm;

}

public fun Maximize(Point other) : Point {

if (x < other.x) {

x = other.x;

}

if (y < other.y) {

y = other.y;

}

if (z < other.z) {

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

127:70 Fabian Muehlboeck and Ross Tate

z = other.z;

}

return this;

}

public fun Print() : Void {

"<".Print();

x.ToString().Print();

",␣".Print();

y.ToString().Print();

",␣".Print();

z.ToString().Print();

">␣".Print();

}

}

class PointMapFun implements Fun<Int, Point> {

public constructor() {

super();

}

public fun this(Int i) : Point {

return new Point(i + 0.0);

}

}

class Main {

public static fun Maximize(ArrayList<Point> points) : Point {

Point next = points.Get(0);

foreach (Point point in Enumerable.From<Point>(points, 1)) {

next = next.Maximize(point);

}

return next;

}

public static fun Benchmark(Int n) : Point {

ArrayList<Point> points = Enumerable.ToList<Point>(Enumerable.Map<Int, Point>([0..n:1],

new PointMapFun()));

foreach (Point point in points) {

point.Normalize();

}

return Maximize(points);

}

public static fun Main() : Void {

Timer timer = new Timer();

Point result = Benchmark(100000);

timer.PrintDifference();

"\n".Print();

result.Print();

}

}

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 127. Publication date: October 2021.

	Abstract
	1 Introduction
	2 Overview
	2.1 Code Migration and Gradual Guarantees
	2.2 Mixing Paradigms
	2.3 Changing Hierarchies
	2.4 Casts, Coercions, and Run-Time Overhead

	3 MonNom
	3.1 Grammar
	3.2 Type System

	4 Transition
	4.1 Program Precision
	4.2 Expression Precision
	4.3 The Static Gradual Guarantee

	5 Semantics
	5.1 Lowering
	5.2 The Heap
	5.3 Values
	5.4 Casts
	5.5 Errors and Safety
	5.6 Invocation
	5.7 The Dynamic Gradual Guarantee

	6 Implementation
	6.1 Value Representation
	6.2 Typed Method Invocation and Call Tags
	6.3 Untyped Method Invocation
	6.4 -Methods
	6.5 Fields

	7 Evaluation
	7.1 Methodology
	7.2 Benchmarks
	7.3 Threats to Validity

	8 Conclusion
	Acknowledgments
	References
	A Full Formalization
	A.1 Grammar
	A.2 Typing
	A.3 Precision
	A.4 Lowered Grammar
	A.5 Lowered Typing
	A.6 Lowering
	A.7 Reduction
	A.8 Semantics
	A.9 Lowered Precision

	B Benchmark Source Code
	B.1 sieve
	B.2 intersort
	B.3 float

